Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
!!Ответы ИТ сборка.docx
Скачиваний:
4
Добавлен:
01.03.2025
Размер:
1.72 Mб
Скачать

28 Имитационные эксперименты. Язык имитационного моделирования gpss – возможности, структура. Примеры решения инженерных и научных задач методом имитационного моделирования.

Имитационный эксперимент — это проведение серии имитационных расчетов в системном масштабе времени и по разработанному алгоритму. Каждая реализация модели отличается от другой только в одном изучаемом аспекте. Таким образом, в результате имитационного эксперимента образуются ряды статистических данных (выборки), обработка которых требует определенных знаний.

GPSS (General Purpose Simulation System) – общецелевая система моделирования сложных систем, разработанная Джеффри Гордоном. 

Это комплексный моделирующий инструмент, охватывающий области как дискретного, так и непрерывного компьютерного моделирования, обладающий высочайшим уровнем интерактивности и визуального представления информации.

Особенности:

- Для работы с системой используется программамастер, которая позволяет достаточно просто создавать, компилировать и запускать модели на выполнение.

- Функции и параметры модели – типизированы, и могут быть следующих базовых типов: целый, вещественный, строковый и логический.

- Система GPSS, ориентирована на дискретно-событийное моделирование систем массового обслуживания. Представление жизни модели как движения во времени заявок, перемещающихся в модели и обслуживающихся в устройствах очень естественно для многих задач имитационного моделирования.

- Автоматический сбор статистики.

Имитационная модель в GPSS представляет собой последовательность текстовых строк, каждая из которых определяет правила создания, перемещения, задержки и удаления объектов.

Объектами могут быть транзакты (элементарная единица системы), блоки (пути движения транзактов) и т.д. Всего 14 типов.

Иными словами, модель системы состоит из последовательности управляющих и исполняемых выражений. Исполняемые выражения, называемые блоками, описывают логику потока транзакций в ходе моделирования.

Главное меню содержит следующие вкладки: File Convert Edit Help.

Во вкладке File, можно получить доступ к открытию сохраненной модели, сохранить или сохранить как модель, изменить шрифт и выйти.

Во вкладке Convert, можно конвертировать модель в exe файл, чтобы использовать его как самостоятельную модель.

Во вкладке Edit, находятся стандартные функции для любого приложения Windows, вставить объект, удалить объект, найти / заменить текст, выделить, поиск ошибки и т.д.

Вкладка Help представляет собой помощь англоязычному пользователю.

+ написать в этом вопросе, в рамках возможности GPSS, – цель им. модели из 21.

29 Элементы теории планирования экспериментов. Методы планирования эксперимента, методы оптимизации, методы экспертного анализа.

Планирование эксперимента – это процедура выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью. При этом существенно следующее:1Стремление к минимизации общего числа опытов;2 одновременное варьирование всеми переменными, определяющими процесс, по специальным правилам – алгоритмам; 3использование математического аппарата, формализующего многие действия экспериментатора; 4 выбор четкой стратегии, позволяющей принимать обоснованные решения после каждой серии эксперимен­тов.

Задачи поиска оптимальных условий являются одними из наиболее распространенных научно-технических задач. Они возникают в тот момент, когда установлена возмож­ность проведения процесса и необходимо найти наилучшие условия его реализации. Задачи, сформулированные таким образом, на­зываются задачами оптимизации. Процесс их решения называется процессом оптимизации или просто оптими­зацией. Эксперимент, который ставится для решения задач оп­тимизации, называется экстремальным.

Опыт – это отдельная экспериментальная часть. План эксперимента – совокупность данных определяющих число, условия и порядок проведения опытов.

В процессе измерений, последующей обработки данных, а также формализации результатов в виде математической модели, возникают погрешности и теряется часть информации, содержащейся в исходных данных. Цель планирования эксперимента – нахождение таких условий и правил проведения опытов при которых удается получить надежную и достоверную информацию об объекте с наименьшей затратой труда, а также представить эту информацию в компактной и удобной форме с количественной оценкой точности.

Пусть исследуемое свойство Y объекта зависит от n независимых переменных (Х1, Х2, …, Хn) и мы хотим выяснить характер этой зависимости – Y=F(Х1, Х2, …, Хn), о которой мы имеем лишь общее представление. Величина Y – называется “отклик”, а сама зависимость Y=F(Х1,Х2, …, Хn) – “функция отклика”.

Среди основных методов планирования, применяемых на разных этапах исследования, используют:- планирование отсеивающего эксперимента, основное значение которого выделение из всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению;-планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами;- планирование регрессионного эксперимента, позволяющего получать регрессионные модели (полиномиальные и иные);- планирование экстремального эксперимента, в котором главная задача – экспериментальная оптимизация объекта исследования;- планирование при изучении динамических процессов и т.д.

Выбор параметров оптимизации является одним из главных этапов работы на стадии предварительного изучения объекта исследования, т.к. правильная постановка задачи зависит от правильности выбора параметра оптимизации, являющегося функцией цели.

Под параметром оптимизации понимают характеристику цели, заданную

количественно. Параметр оптимизации является реакцией (откликом) на воздействие факторов, которые определяют поведение выбранной системы.

Параметр оптимизации – это признак, по которому оптимизируется процесс. 1 Он должен быть количественным, задаваться числом. Множество значений, которые может принимать параметр оптимизации, называется областью его определения. Области определения могут быть непрерывными и дискретными, ограниченными и неограниченными. 2 требование: параметр оптимизации должен выражаться одним числом. 3требование, связанное с количественной природой параметра оптимизации – однозначность в статистическом смысле. 4 наиболее важным требованием, требованием к параметрам оптимизации является его возможность действительно эффективной оценки функционирования системы. 5 требование к параметру оптимизации – требование универсальности или полноты. Под универсальностью параметра оптимизации понимают его способность всесторонне охарактеризовать объект. 6 требование: желательно, чтобы параметр оптимизации имел физический смысл, был простым и легко вычисляем.