Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
!!Ответы ИТ сборка.docx
Скачиваний:
4
Добавлен:
01.03.2025
Размер:
1.72 Mб
Скачать

20 Статистические методы анализа данных

Статистические методы делятся на одно- и многомерные. Одномерные методы ( univariate techniques ) используются тогда, когда все элементы выборки оцениваются единым измерителем, либо если этих измерителей несколько для каждого элемента, но каждая переменная анализируется при этом отдельно ото всех остальных.

Многомерные методы (multivariate techniques) прекрасно подходят для анализа данных, если для оценки каждого элемента выборки используется два или больше измерителей, а эти переменные анализируются одновременно. Такие методы применяются для определения одновременных взаимосвязей между двумя или больше явлениями.

Многомерные методы отличаются от одномерных прежде всего тем, что при их использовании центр внимания смещается с уровней (средних показателей) и распределений (дисперсий) явлений и сосредотачивается на степени взаимосвязи (корреляции или ковариации) между этими явлениями. Оба этих вида статистических методов анализа подробно описаны в последующих главах, но сейчас мы покажем, как разные методы взаимосвязаны в общей схеме классификации.

Одномерные методы можно классифицировать на основе того, какие данные анализируются: метрические или неметрические. Метрические данные (metric data) измеряются по интервальной шкале или относительной шкале.

Неметрические данные (nonmetric data) оцениваются по номинальной или порядковой шкале

Затем эти методы делят на классы на основе того, сколько выборок — одна, две или более — анализируется в ходе исследований. Заметим, что число выборок определяется тем, как ведется работа с данными для конкретного анализа, а не тем, каким способом собирались данные. Например, данные по лицам мужского и женского пола можно получить в пределах одной ныбор-ки, но если их анализ нацелен на выявление разницы в восприятии, основанной на разнице полов, исследователю придется воспользоваться двумя разными методами выборки. Выборки считаются независимыми, если они выделены из разных генеральных совокупностей произвольно. Для анализа данные, относящиеся к разным группам респондентов, например собранные от лиц женского и мужского пола, обычно обрабатываются как независимые выборки.

С другой стороны, если данные по двум выборкам относятся к одной и той же группе респондентов, выборки считаются объединенными в пары.

Что касается метрических данных, то если существует только одна выборка, может использоваться z- и t-критерий. Если же независимых выборок две или больше, в первом случае можно воспользоваться z- и t-критерием для двух выборок, в во втором — методом однофакторного дисперсионного анализа. Для двух связанных выборок используется парный t-критерий. Если речь идет о неметрических данных по одной выборке, исследователь может воспользоваться критериями частотного распределения, хи-квадратом, критерием Колмогорова—Смирнова, критерием серий и биномиальным критерием. Для двух независимых выборок с неметрическими данными можно прибегнуть к следующим методам анализа: хи-квадрат, Манна—Уитни, медианы, , однофакторным дисперсионным анализом Крускала—Уоллиса. В отличие от этого, если существует две или больше взаимосвязанных выборок, следует воспользоваться критериями знаков, Мак-Немара и Уилкоксона (рис. 14.6).

Многомерные статистические методы можно разделить на методы зависимости и методы взаимозависимости (рис. 14.7).

Методы зависимости (dependence techniques) применяются в случаях, когда одна или больше переменных идентифицированы как зависимые, а остальные — как независимые.

Если есть только одна зависимая переменная, используются такие методы анализа, как кросс-табуляция, дисперсионный и ковариационный анализ, регрессионный анализ, двух-групповой. дискриминантный анализ и совместный анализ. Однако, если имеется больше одной зависимой переменной, следует воспользоваться многомерными методами анализа: дисперсионным и ковариационным, методом канонической корреляции и множественным дискриминантный анализом. При применении методов взаимозависимости (interdependent techniques) переменные не подразделяются на зависимые и независимые; напротив, исследуется весь набор взаимозависимых взаимосвязей.

Методы данного типа нацелены прежде всего на выявление взаимозависимости переменных либо межобъектного сходства. При исследовании взаимозависимости переменных чаще всего применяется факторный анализ. Анализ межобъектного сходства можно вести, используя методы кластерного анализа и многомерного шкалирования.