
- •1. Диссертация как документ-контейнер
- •2 Способы систематизации научной информации средствами информационных технологий
- •3 Понятие информации и информационных технологий. Классификация и виды информационных технологий
- •4 Информатизация и компьютеризация. Техническое и программное обеспечение. Техническое и программное обеспечение современных процедур научной деятельности.
- •5. Понятие и виды информационных систем.
- •6 Вычислительная техника, классификация компьютеров по применению.
- •7 Персональные компьютеры. Периферийные устройства. Электронная оргтехника.
- •8. Компьютерные сети. Современные средства связи и их взаимодействие в с компьютерной техникой
- •По территориальной распространенности
- •По типу функционального взаимодействия
- •9 Понятие операционной системы. Функции ос.
- •10. Классификация операционных систем. Понятие файловой системы в ос.
- •11. Авторизация, разграничение доступа к объектам ос. Краткий обзор современных операционных систем.
- •12. Общая характеристика языков программирования. Виды языков программирования
- •13. Общая характеристика языков программирования. Классы языков программирования
- •14 Стандартизация языков программирования. Парадигма программирования
- •17 Процедурное, объектно-ориентированное и логическое программирование
- •18 Математическое обеспечение информационных технологий и компьютерное моделирование в предметной области.
- •19 Понятие модели. Основные принципы и этапы моделирования.
- •20 Статистические методы анализа данных
- •21 Пакеты прикладных программ по статистическому анализу данных
- •22 Пакет прикладных программ по статистическому анализу данных Statgraphics. Возможности и особенности пакета Statgraphics.
- •23 Пакет Statgraphics. Одномерный статистический анализ: оценка числовых характеристик, подбор закона распределения случайных величин.
- •24 Пакет Statgraphics. Одномерный статистический анализ. Сравнение нескольких случайных величин: сравнение числовых характеристик и законов распределения. Статистическая проверка гипотез.
- •25 Пакет Statgraphics. Анализ зависимостей между величинами: регрессионный и корреляционный анализ. Анализ временных рядов.
- •26 Пакет Statgraphics. Многомерный анализ: метод главных компонентов, кластерный, дискриминантный анализ.
- •27 Имитационное моделирование. Принципы построения имитационных моделей. Примеры решения инженерных и научных задач методом имитационного моделирования.
- •28 Имитационные эксперименты. Язык имитационного моделирования gpss – возможности, структура. Примеры решения инженерных и научных задач методом имитационного моделирования.
- •29 Элементы теории планирования экспериментов. Методы планирования эксперимента, методы оптимизации, методы экспертного анализа.
- •30 Системы поддержки принятия решений. Пакеты прикладных программ.
- •31 Экспертные системы. Оболочки для построения экспертных систем. Поисковая, диагностическая, интерпретирующая системы. Пакеты прикладных программ.
- •32. Системы компьютерной математики и математического моделирования, системы программирования. Инструментальные средства для решения прикладных задач.
- •33 Назначение и состав универсальной интегрированной системы компьютерной математики matlab (MathCad).
- •34 Интерфейс системы, основные объекты и форматы чисел matlab (MathCad).
- •35 Операторы и функции в matlab (MathCad).
- •36 Матричные вычисления в matlab (MathCad).
- •37 Построение графиков в matlab (MathCad).
- •38 Основы программирования в matlab (MathCad).
- •39 Исследование функций и оптимизация в matlab (MathCad). Исследование функций одной переменной. Исследование функций нескольких переменных.
- •40 Линейное программирование (решение задач оптимизации) в matlab (MathCad).
- •41.Понятие и классификация программного обеспечения. Обзор и характеристики пакетов программ в предметной области.
- •42 Текстовый процессор: основные объекты. Символ, абзац, страница, непечатаемые знаки, документ. Стиль, шаблон, перекрестные ссылки, оглавления, указатели.
- •43. Табличные процессоры. Системы поддержки принятия решения.
- •44. Статистический анализ данных средствами ms Excel.
- •45 Пакет анализа ms Excel. Описательная статистика. Решение задач описательной статистики.
- •46 Пакет анализа ms Excel. Генерация случайных чисел.
- •47. Пакет анализа ms Excel. Корреляционный анализ, регрессионный анализ.
- •48 Поиск корней уравнения с помощью подбора параметра в ms Excel.
- •49 Поиск решения. Решение задач оптимизации средствами ms Excel.
- •50.Системы подготовки презентаций.
- •51.Сервисные инструментальные средства: архиваторы, электронные словари, переводчики, программы распознавания текста
- •Электронные переводчики
- •Электронный переводчик как словарь.
- •Электронный переводчик как накопительная словарная база
- •Программа распознавания текста CuneiForm
- •Основные возможности программы
- •Достоинства CuneiForm
- •Недостатки
- •52 "Технология Compreno для обработки текстов на естественном языке. Множество прикладных задач по обработке текстов на естественном языке с помощью универсальной лингвистической платформы Compreno."
- •53 Основы компьютерной графики. Графические редакторы. Понятие о векторных и растровых графических редакторах.
- •54. Универсальный растровый графический редактор Photoshop – возможности, назначение , создание и редактирование рисунков.
- •55. Графический редактор Corel Draw – возможности, назначение, создание и редактирование рисунков.
- •56. Понятие системы автоматизированного проектирования. Обзор систем автоматизированного проектирования.
- •57 Универсальный векторный графический редактор AutoCad – возможности, назначение, создание и редактирование чертежей.
- •Разработка проекта в системе Autocad
- •58. Системы автоматизированного проектирования: возможности, назначение, принципы работы (пример ArchiCad)
- •59 Структуры данных, модели данных, создание базы данных и таблиц
- •60 Основы проектирования баз данных. Базы знаний.
- •Базы знаний
- •61 Системы управления базами данных (субд): понятие и основные объекты. Access, Oracle, MySql, Foxpro, dBase, sql Server и др.
- •62 Реляционные и объектно-ориентированные базы данных.
- •63 Объекты ms Access. Построение различных типов запросов в ms Access. Формы и отчеты в ms Access.
- •Построение различных типов запросов в ms Access
- •1 Создание запроса на выборку при помощи мастера
- •2 Создание запроса на выборку без помощи мастера
- •3. Создание запроса с параметрами, запрашивающего ввод условий отбора при каждом запуске
- •Формы и отчеты в ms Access
- •64.Основы языка sql и построение sql-запросов. Сортировка, поиск, фильтрация данных.
- •65 Основы web-дизайна
- •66. Проектирование и разработка web-сайтов и сопутствующее по
- •Создание шаблона html-документа и заполнение его информацией
- •68. Основы Web-дизайна. Работа с редакторами визуального проектирования.
- •69. Основы Интернет-программирования. Основы JavaScript.
- •70 Компьютерные сети: локальные, корпоративные, региональные, глобальные.
- •71 Службы сети Интернет: электронная почта, всемирная информационная паутина, служба передачи файлов, служба телеконференций и др.
- •72. Работа с почтовым клиентом. Планирование совместной деятельности в корпоративной сети с помощью почтовых программ
- •73. Методы и средства поиска информации в интернет
- •74 Проблемы защиты информации: несанкционированный доступ к данным, влияние деструктивных программ, преступления в деловых Интернет-технологиях.
- •75 Организационные методы защиты информации.
- •Физическое ограничение доступа
- •Контроль доступа к аппаратуре
- •Контроль доступа к данным и носителям информации
- •76 Технические и программные методы защиты информации.
- •Защита данных на отдельном компьютере
- •Защита данных в локальных сетях
- •1) Служба www
- •2) Электронная цифровая подпись (эцп)
- •77. Криптографические методы защиты. Электронная цифровая подпись. Методы компьютерной стеганографии.
- •78. Организационно-правовые аспекты защиты информации и авторское право. Нормативные документы.
- •Глава 7 защита информации
- •80 Пути решения проблемы информатизации общества.
- •81 Информационные технологии управления
- •Внедрение информационных технологий в образование
- •Электронное обучение: самообучение; обучение, управляемое инструктором; дистанционное обучение.
- •Управление качеством образования на основе информационных технологий
- •83. Ит сбора, хранения и быстрой обработки научн. Инф.
- •84 Проблемы и риски внедрения информационных технологий в общественной практике.
18 Математическое обеспечение информационных технологий и компьютерное моделирование в предметной области.
Математическое обеспечение (МО) — это совокупность математических методов, моделей и алгоритмов обработки информации, используемых при решении функциональных задач и в процессе автоматизации проектировочных работ АИТ. Математическое обеспечение включает средства моделирования процессов управления, методы и средства решения типовых задач управления, методы оптимизации исследуемых управленческих процессов и принятия решений (методы многокритериальной оптимизации, математического программирования, математической статистики, теории массового обслуживания и т.д.). Техническая документация по этому виду обеспечения АИТ содержит описание задач, задания по алгоритмизации, экономико-математические модели задач, текстовые и контрольные примеры их решения. Персонал составляют специалисты по организации управления объектом, постановщики задач управления, специалисты по вычислительным методам, проектировщики АИТ.
Компьютерное моделирование в предметной области
Основной составляющей объектно-ориентированного анализа при разработке компьютерных обучающих систем является декомпозиция проблемы на отдельные классы понятий (концептуальные классы) или объекты. Модель предметной области — это визуальное представление концептуальных классов или объектов реального мира в терминах предметной области. Моделирование предметной области — один из начальных этапов проектирования системы, необходимый для выявления, классификации и формализации сведений обо всех аспектах предметной области, определяющих свойства разрабатываемой системы.
Приводите пример компьютерного моделирования в своей области.
19 Понятие модели. Основные принципы и этапы моделирования.
Слово "модель" произошло от латинского слова "modelium", означает: мера, образ, способ и т.д. Под моделью понимается либо конкретный образ изучаемого объекта, в котором отображаются реальные или предполагаемые свойства, строение и т.д., либо другой объект, реально существующий наряду с изучаемым и сходный с ним в отношении некоторых определенных свойств или структурных особенностей.
Общим свойством всех моделей является их способность, так или иначе отображать действительность. В зависимости от того, какими средствами, при каких условиях, по отношению к каким объектам познания это их общее свойство реализуется, возникает большое разнообразие моделей, а вместе с ним и проблема классификации моделей.
Моделирование может быть: -предметное (исследование объекта на модели основных геометрических, физических, динамических, функциональных его характеристик) -физическое (воспроизведение физических процессов) -пpедметно-математическое (исследование физического процесса путем опытного изучения каких-либо явлений иной физической природы, но описываемых теми же математическими соотношениями, что и моделируемый процесс) -знаковое (расчетное моделирование, абстpактно-математическое).
Независимо от способа проектирования сложной системы и назначения моделирования можно выделить следующие восемь этапов создания и использования математических моделей: 1 определение объекта имитации, установление границ и ограничений моделирования, выбор показателей для сравнения эффективности вариантов системы (составление содержательного описания объекта моделирования); 2 формулировка замысла модели, переход от реальной системы к логической схеме ее функционирования (составление концептуальной модели); 3 реализация описания объекта в терминах математических понятий и алгоритмизация функционирования ее компонент (составление формального описания объекта); 4 преобразование формального описания объекта в описание имитационной модели (составление описания имитационной модели); 5 программирование и отладка модели (программирование модели); 6 проверка модели, оценка ее свойств и затрат ресурсов на имитацию (испытание и исследование модели); 7 организация модельного эксперимента на ЭВМ (эксплуатация модели); 8 интерпретация результатов моделирования и их использование в ходе проектирования сложной системы (анализ результатов).
Модель – объект или описание объекта, системы для замещения (при определенных условиях предложениях, гипотезах) одной системы (т.е. оригинала) другой системы для изучения оригинала или воспроизведения его каких-либо свойств.
Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект.
Объект (система) определяется совокупностью параметров и характеристик. Множество параметров системы отражает ее внутреннее содержание – структуру и принципы функционирования. Характеристики системы – это ее внешние свойства, которые важны при взаимодействии с другими системами. Характеристики системы находятся в функциональной зависимости от ее параметров.
Модели объектов делятся на два больших класса: материальные (физические) и абстрактные (математические). Среди физических моделей наибольшее распространение получили аналоговые модели. С развитием математики широкое применение получили математические модели. По существу вся математика создана для составления и исследования моделей объектов или процессов.
Создание математической модели преследует две основные цели:
-дать формализованное описание структуры и процесса функционирования системы для однозначности их понимания;
-попытаться представить процесс функционирования в виде, допускающем аналитическое исследование системы.
Единой методики построения математических моделей не существует. Это обусловлено большим разнообразием классов систем:
-статические и динамические;
-непрерывные и дискретные;
-линейные и нелинейные:
-стационарные и нестационарные:
-детерминированные и стохастические.
Построение модели, отражающей статику системы (состав компонентов и структуру связей) не вызывает больших затруднений. Для динамической системы статику необходимо дополнить описанием работы системы.
Для моделирования необходимо создать модель и провести ее исследование. Моделирование на ЭВМ предполагает выполнение следующих этапов:
1.формулирование цели моделирования;
2.разработка концептуальной модели. Концептуальная (содержательная) модель в словесной форме определяет состав и структуру системы, свойства компонентов и причинно-следственные связи между ними.
3.подготовка исходных данных. Концептуальная модель определяет совокупность параметров и внешних воздействий. Для количественных параметров необходимо определить их конкретные значения, которые будут использованы в виде исходных данных при моделировании;
4.разработка математической модели;
5.выбор метода моделирования. Математическая модель может быть исследована различными методами – аналитическими или имитационными;
6.выбор средств моделирования (технических, программных);
7.разработка программной модели;
8.проверка адекватности и корректировка модели. Адекватность модели нарушается по многим причинам: из-за идеализации внешних условий и режимов функционирования; исключения тех или иных параметров; пренебрежения некоторыми случайными факторами. Если по результатам проверки адекватности выявляется недопустимое рассогласование модели и системы, возникает необходимость в корректировке или калибровке модели
9.планирование экспериментов (выбор определенных сочетаний параметров и очередности проведения экспериментов);
10.анализ результатов моделирования.
Если результаты не соответствуют целям поставленной задачи, значит, на предыдущих этапах были допущены ошибки. В этом случае необходимо корректировать модель, то есть возвращаться к одному из предыдущих этапов. Процесс повторяется до тех пор, пока результаты компьютерного эксперимента не будут отвечать целям моделирования.