
- •§ 1. Понятие о фотограмметрии
- •§ 2. Основные виды и методы фототопографических съемок
- •§ 3. Краткий исторический очерк развития фотограмметрии
- •Глава 1. Основы аэрофотосъемки
- •§ 4. Общие понятия об аэрофотосъемке
- •§ 5. Фотографический объектив
- •§ 6. Характеристики фотографического объектива
- •§ 7. Светочувствительные слои и их основные показатели
- •§ 8. Аэрофотоаппарат
- •§ 9. Виды аэрофотосъемки. Носители съемочной аппаратуры
- •§ 10. Основные технические требования к топографической аэрофотосъемке
- •§11. Специальное аэросъемочное оборудование
- •§ 12. Аэрофотосъемочные работы
- •§ 13. Факторы, определяющие характер отображения объектов местности на аэроснимках
- •Глава 2. Геометрические основы фотограмметрии
- •§ 14. Понятие о центральной проекции
- •§ 15. Элементы центральной проекции
- •Основных точек центральной проекции
- •§ 16. Перспектива точки и прямой предметной плоскости
- •§ 17. Теорема Шаля. Эпюры
- •§ 18. Перспектива отвесной прямой
- •§ 19. Перспектива сетки квадратов
- •Масштаб изображения по направлениям, совпадающим с горизонталями, остается неизменным. В этом можно убедиться, рассмотрев подобные треугольники с общей вершиной в точке l
- •Глава 3. Теория одиночного снимка
- •§ 20. Системы координат в фотограмметрии
- •§ 21. Элементы ориентирования аэроснимка
- •§ 22. Преобразования координатных систем
- •§ 23. Определение направляющих косинусов
- •0 Cosa„
- •§ 24. Зависимость между координатами соответственных точек аэроснимка и местности
- •§ 25. Зависимость между координатами точек наклонного и горизонтального аэроснимков
- •Координат точек наклонного и горизонтального снимков
- •§ 26. Масштаб изображения на аэроснимке
- •§ 27. Смещения точек, вызванные влиянием угла наклона аэроснимка
- •Полезная площадь планового аэроснимка близка к его рабочей площади.
- •Длина отрезка, симметричного относительно точки нулевых искажений, не искажается: углы ф для концов отрезка различаются на 180°, а их искажения равны по величине и противоположны по знаку.
- •§ 28. Линейные смещения, вызванные влиянием рельефа местности
- •Для уменьшения влияния рельефа местности следует увеличивать либо высоту фотографирования н, либо фокусное расстояние /.
- •§ 29. Искажения направлений, вызванные влиянием угла наклона аэроснимка и рельефа местности
- •§ 30. Искажение изображения площади
- •§ 31. Физические источники ошибок аэроснимка
- •-Dy. Значение cos у найдем из прямоугольного треугольника Sna (рис. 3.18), из которого следует, что Рас. 3.18. Смещения точек, вызнанные влиянием атмосферной рефракции
- •Определения дисторсии
- •Глава 4. Трансформирование аэроснимков
- •§ 32. Понятие о трансформировании
- •§ 33. Аналитическое трансформирование
- •§ 34. Понятие о фотомеханическом трансформировании
- •§ 35. Оптические и геометрические условия фототрансформирования
- •§ 35.1. Оптические условия фототрансформирования
- •§ 35.2. Геометрические условия фототрансформирования
- •1. Угол между предметной плос костью (экраном) и картинной плос костью должен быть равен суммарно му углу наклона аэроснимка ас.
- •§ 36. Элементы трансформирования
- •§ 37. Фототрансформаторы
- •§ 38. Трансформирование аэроснимков на фототрансформаторе
- •§ 38.1. Расчет толщины подложки
- •§ 38.2. Фототрансформирование по установочным данным
- •§ 38.3. Фототрансформирование по опорным точкам
- •Условные обозначения: — точки опорного планшетика;
- •§ 39. Учет рельефа при фототрансформировании
- •* Пред 1000г '
- •Карты, соответствующий рабочей площади снимка
- •Определение по карте высот опорных (трансформационных) точек Zb округление их до отметок ближайших горизонталей и расчет колебания рельефа в пределах рабочей площади снимка
- •Вычисление отметок средних плоскостей каждой зоны £срл1л.:
- •4. Расчет поправок по формулам, (4.14), (4.15) и введение их в по ложение трансформационных точек опорного планшетика для первой,
- •Зоны трансформирования
- •Глава 5. Плоскостная фототриангуляция
- •§ 40. Общие сведения
- •§ 41. Построение одномаршрутного ряда
- •§ 42. Редуцирование фототриангуляции
- •Глава 6. Фотопланы и фотосхемы
- •§ 43. Понятие о фотопланах и фотосхемах
- •§ 44. Изготовление фотосхем
- •§ 45. Изготовление фотопланов
- •§ 46. Контроль фотопланов и фотосхем
- •Глава 7. Дешифрирование снимков
- •§ 47. Понятие о дешифрировании
- •§ 48. Дешифровочные признаки
- •Кустами; 4 - молодые посадки леса
- •§ 49. Содержание работ по дешифрированию
- •§ 50. Физиологические особенности дешифрирования
- •Глава 8. Способы наблюдения и измерения стереомодели
- •§ 51. Глаз - оптическая и физиологическая система
- •§ 52. Монокулярное и бинокулярное зрение
- •§ 53. Стереоскопическое зрение
- •Наблюдение снимков
- •§ 54. Способы стереоскопических наблюдений
- •§ 55. Способы измерения снимков и стереомодели
- •142 Вдоль левого проектирующего луча.
- •§ 56. Стереокомпараторы
- •§ 57. Измерения на стереокомпараторе
- •§ 58. Точность измерений
- •Глава 9. Теория пары аэроснимков
- •§ 59. Основные понятия и стереофотограмметрии
- •1. Модель местности не разрушится, если точку s2 переместить в положение s'2, оставляя проектирующие лучи в тех же базисных плоскостях.
- •2. Модель местности не разрушится, если обе связки одновременно, не меняя их взаимного положения, развернуть или наклонить в произвольном направлении.
- •§ 60. Элементы ориентирования пары аэроснимков
- •§ 61. Прямая фотограмметрическая засечка
- •§ 62. Основные формулы идеального случая съемки
- •§ 63. Элементы взаимного ориентирования пары аэроснимков
- •§ 64. Уравнение взаимного ориентирования
- •§ 65. Определение элементов взаимного ориентирования по стандартным точкам
- •§ 66. Строгий способ определения элементов взаимного ориентирования
- •§ 67. Точность определения элементов взаимного ориентирования
- •§ 68. Неопределенность взаимного ориентирования
- •Должны быть
- •§ 69. Связь угловых элементов внешнего ориентирования снимков стереопары
- •Глава 10. Построение
- •§ 70. Построение фотограмметрической модели по паре аэроснимков
- •§ 71. Построение фотограмметрической модели по трем аэроснимкам
- •§ 72. Элементы внешнего (геодезического) ориентирования модели
- •§ 73. Внешнее ориентирование фотограмметрической модели по опорным точкам
- •§ 74. Деформация фотограмметрической модели
- •Глава 11. Топографический стереометр
- •§ 75. Понятие о дифференцированном способе создания высотной части карты
- •По трансформированным снимкам
- •§ 76. Топографический стереометр стд-2
- •§ 76.1. Уравнение ориентирования снимков на стд-2
- •§ 76,2. Устройство стереометра стд-2
- •Назначение коррекционного механизма
- •§ 77. Обработка снимков на стереометре
- •Глава 12. Универсальные
- •§ 78. Понятие об универсальных приборах
- •§ 79. Особенности обработки аэроснимков с преобразованными связками проектирующих лучей
- •§ 80. Аналоговые фотограмметрические приборы
- •§ 81. Аналитические фотограмметрические приборы
- •1 Гульт управления
- •§ 82. Обработка снимков на универсальных фотограмметрических приборах
- •§ 82.1. Обработка снимков на аналоговых приборах
- •§ 82.2. Обработка снимков на аналитических приборах
- •§ 83. Дифференциальное трансформирование
- •Глава 13. Пространственная фототриангуляция
- •§ 84. Сущность пространственной фототриангуляции
- •1. Все проектирующие лучи проходят через центры фотографиро вания и точки аэроснимков. Значит, связки внутренне ориентированы.
- •§ 85. Классификация методов фототриангуляции
- •§ 86. Понятие об аналоговой фототриангуляции
- •§ 87. Аналитическая маршрутная фототриангуляция
- •§ 87.1. Построение сети из полузависимых моделей
- •§ 87.2. Построение сети из независимых моделей
- •§ 87.3. Построение сети из зависимых моделей
- •§ 87.4. Уравнивание связок проектирующих лучей
- •§ 87.5. Устранение деформации маршрутной сети по опорным точкам
- •§ 88. Аналитическая многомаршрутная фототриангуляция
- •§ 88.1. Объединение в блок независимых маршрутов
- •I I.I I I I.2 I I I.3 I I I.4 I I I.5 I Первый способ предусматривает
- •I 2.1 I I 2.2 I I 2.3 I I 2.4 I I 2.5 I ординат путем объединения всех звеньев
- •§ 88.3. Уравнивание связок проектирующих лучей
- •§ 88.4. Принципы уравнивания с самокалибровкой
- •X, у, £'представлены в системе координат с началом в центре модели и осями, параллельными осям координат базисной системы; в - средняя величина базиса фотографирования.
- •§ 89. Использование спутниковых измерений
- •§ 90. Точность фототриангуляционных сетей
- •§ 91. Требования к густоте и размещению опорных точек
- •§ 92. Технология построения фотограмметрической сети
- •§ 93. Программы построения и уравнивания сетей пространственной фототриангуляции
- •Глава 14. Методы цифровой фотограмметрии
- •§ 94. Понятие о цифровом изображении
- •Координат растрового изображения
- •§ 95. Способы получения цифровых изображений
- •§ 96. Характеристики цифрового изображения
- •§ 97. Преобразование цифровых изображений
- •Яркости и контрастности изображения
- •256 Метрическое разрешение и направ ление координатных осей, и в ре зультате сетки пикселов исходного и Рис. 14.8. Гистограмма яркостей выходного изображения не совпа-
- •§ 98. Стереоскопические наблюдения цифровых изображений
- •§ 99. Измерение цифровых снимков
- •§ 100. Автоматическая идентификация точек цифровых снимков (коррелятор)
- •Определить на правом снимке зону поиска размером тхпг пикселов (т»п) вероятного расположения искомой точки с координатами центра хп & хл - Ьсю уп & ул (рис. 14.13).
- •Последовательным перемещением области размером пхп в границах зоны поиска на один пиксел вначале по оси х, а затем по
- •§ 101. Фотограмметрическая обработка цифровых снимков
- •§ 101.1. Внутреннее ориентирование снимков
- •§ 101.2. Выбор точек и построение фотограмметрических моделей
- •§ 101.3. Построение и уравнивание фототриангуляционной сети
- •§ 102. Построение цифровой модели рельефа
- •§ 102.1. Способы представления цифровлй модели рельефа
- •§ 102.2. Построение триангуляции Делоне (модели tin)
- •§ 102.3. Фотограмметрическая технология построения цифровой модели рельефа
- •§ 103. Цифровое трансформирование снимков (ортотрансформирование)
- •25Jm юоОг
- •§ 103.1. Технология ортотрансформирования
- •Трансформирования границы рабочей площади снимка
- •Снимка начинают с границы рабочей площади
- •«Обратное» ортотрансформирование каждого пиксела исходного снимка, расположенного в границах рабочей площади, в рассмотренном выше порядке, согласно схеме на рис. 14.23.
- •Фотометрическая коррекция сформированного ортоизображения по границам снимков (выравнивание яркостей по границам зон трансформирования).
- •Нарезка ортоизображений на планшеты заданного масштаба по координатам их углов и их зарамочное оформление.
- •§ 103.2. Контроль ортоизображения
- •§ 104. Современные цифровые фотограмметрические системы и их основные характеристики
- •4. 2 * Bo Photomod Mosaic
- •11Азвание
- •Глава 15. Наземная стереоскопическая съемка
- •§ 105. Общие понятия о наземной стереоскопической съемке
- •§ 106. Системы координат и элементов ориентирования наземных снимков
- •§ 107. Связь координат соответственных точек наземных снимков и местности
- •I cosa sina 0| |1
- •0 10 Isinx 0 cosx
- •§ 108. Точность наземной стереотопографической съемки
- •§ 109. Фототеодолиты
- •§ 110. Полевые и камеральные работы при фототеодолитной съемке
- •Глава 16. Материалы дистанционного зондирования земли и их фотограмметрическая обработка
- •§111. Понятие о дистанционном зондировании
- •1,0 Мкм 10 мкм 100 мкм 1,0 мм 1,0 см 1,0 дм 1,0 м Юм Длина волны
- •§ 112. Технические средства дистанционного зондирования
- •§ 113. Основные характеристики материалов дистанционного зондирования
- •Ifo з аметим, что при этих параметрах протяженность орбиты составит 43960 км, а скорость полета спутника - 7,6 км/сек; за время сканирования одной строки изображения он переместится почти на 10 м.
- •§ 114. Космические системы дистанционного зондирования
- •§ 115. Предварительная обработка материалов дистанционного зондирования
- •Радиометрическая, [геометрическая коррек-;ия, приведение к заданной проекции без учета влияния рельефа.
- •Irs (Индия)
- •§ 116. Фотограмметрическая обработка кадровых космических снимков
- •§ 117. Фотограмметрическая обработка материалов оптико-электронного сканирования
- •§ 118. Использование материалов дистанционного зондирования высокого разрешения
- •1,07Х1,я 1,15x1* 1,41-xLfl
- •1,13ХЬд 1.33xLfl 2,0хЬд
- •Глава 17. Материалы фотограмметрической обработки в специальных исследованиях и геоинформационных системах
- •§ 119. Виды фотограмметрической продукции и их характеристика
- •1. Перенесем начала координат на снимке и на карте в центр тяже сти фигуры, образованной опорными точками
- •3. Для каждой опорной точки составим два уравнения вида,
- •§ 1. Понятие о фотограмметрии 3
Рис. 14.13. К автоматической идентификации точек
Выбрать на левом снимке образ R в виде области размером пхп пикселов, в центре которой размещена опознаваемая точка (рис. 14.13), и определить его характеристику-эталон, на основе которой будет выполняться проверка условия (14.9).Определить на правом снимке зону поиска размером тхпг пикселов (т»п) вероятного расположения искомой точки с координатами центра хп & хл - Ьсю уп & ул (рис. 14.13).
Последовательным перемещением области размером пхп в границах зоны поиска на один пиксел вначале по оси х, а затем по
272
оси у создать на правом снимке серию образов R и определить характеристики каждого из них. 4. Сопоставить характеристики каждого образа R с характеристикой-эталоном вектора R. Искомая точка на правом снимке будет расположена в центре образа R , для которого выполняется условие (14.9). Установление степени соответствия векторов R и R представляет основную трудность и может быть выполнено различными путями, из которых наиболее распространенным является расчет коэффициентов корреляции между яркостями элементов образа R и каждого из образов R на правом снимке с использованием формулы:
-= Zfa-PoXPi-Pi) ^ (1410)
VKpi - Ро)2 х >Щр! - Ро)2
где ро и р'о - средние яркости элементов зон (фрагментов), соответствующих образам левого (Л) и правого (R) снимков.
Коэффициенты, подсчитанные для сочетаний образа R со всеми образами R\ образуют корреляционную матрицу: максимальное значение ее элемента соответствует наиболее тесной связи яркостей сравниваемых участков левого и правого снимков, и, следовательно, выполнению условия (14.9). Так что искомая точка лежит в центре образа i?' с максимальным коэффициентом корреляции.
Некоторые способы предполагают отыскание искомой точки по максимуму корреляционной функции, составленной на основе анализа элементов корреляционной матрицы с частными коэффициентами корреляции (14.10), соответствующей искомому образу R .
Размер области снимка, отождествляемой с образом R, обычно составляет 21x21 пиксел; при малом числе контуров местности он увеличивается до 41x41 пикселов. Программы обработки обычно запрашивают полуразмер корреляционной матрицы (образа R).
Размер области поиска на правом снимке выбирается таким, чтобы ом был больше ожидаемого смещения точки из-за влияния рельефа местности, подсчитываемого по формуле (3.40). Так, при Н = 2000 м, h. = 50 м г = 100 мм будем иметь 8д = 2,5 мм, а размер области поиска - минимум 5x5 мм.
Рассмотренный алгоритм позволяет отождествить точку на правом снимке с точностью, не превышающей одного пиксела. Для точных фотограмметрических измерений этого недостаточно, и для ее увели-
273
чения выполняют второй прием поиска с уменьшенным в k раз размером пиксела и соответственно меньшей областью поиска.
Используемые в настоящее время способы автоматического отождествления точек аэроснимков основаны на более или менее строгом анализе яркостей и геометрического положения элементов изображения, и их надежность всецело определяется метрическими и изобразительными свойствами изображений, особенностями контурной нагрузки и т.п. Все это предопределяют целесообразность стереоскоп пического контроля положения измерительной марки после работы коррелятора, особенно при обработке снимков малоконтурной местности. В большинстве случаев опытный наблюдатель ее обязательно чуть-чуть подправит по высоте.
Кроме того, смещения точек, вызванные влиянием угла наклона снимка и рельефа местности, вызывают смещения отдельных элементов растра, что меняют рисунок изображения и это не может не сказываться на качестве идентификации.
Так, если на левом снимке образ R всегда представлен квадратом, то на правом снимке из-за влияния угла наклона и рельефа местности соответствующие элементы образа R получают смещения, и в общем случае образуют контур многоугольника. Поскольку анализируемый образ R геометрически не всегда подобен образу Д, то вероятность полного совпадения искомой точки уменьшается. Еще более сложная ситуация возникает в случае, если изображения левого и правого снимков развернуты одно относительно другого. Правда, из-за малости элементов изображения влияние перечисленных источников искажений не столь значительны, а их влияние можно компенсировать геометрической коррекцией положения пика корреляции и соответствующей ему точки правого снимка. Одно из таких решений основано на том, что смещения элементов образа являются следствием влияния рельефа в пределах соответствующего участка местности и интерпретируются как параллактические смещения .
В системах цифровой обработки изображений достаточно широко применяется еще один способ для идентификации точек снимков, сущность которого заключается в следующем.
Поскольку перекрывающиеся части смежных снимков являются проекциями одного и того же участка местности, полученными из разных центров, то перекрывающиеся изображения пары смежных снимков проективны, и для преобразования их координат правомерно применение формул проективного преобразования (4.1):
Книжников Ю. Ф., Гельман Р. Н. О некоторых источниках погрешностей при автоматическом измерении цифровых стереопар // Геодезия и картофафия. 2000. № 5. с. 25-31.
274
А,*' |
+ A2y' |
+ AA |
Ctx Btx' |
' + C,y + B2y' |
+ 1 + bA |
Cxx |
' + C,y |
+ 1 J |
где х', у',х, у - координаты точек, отнесенные к плоскостям левого и правого снимков соответственно; At, Bit Ct - параметры проективного преобразования.
Зависимости (14.11) содержат восемь неизвестных параметров преобразования, для определения которых достаточно измерить на смежных снимках координаты четырех пар соответственных точек, составить восемь уравнений поправок, решение которых позволяет отыскать параметры А/, В*, Cif после чего они могут быть использованы для идентификации любых других точек обрабатываемых снимков. Возможности рассмотренного способа ограничиваются влиянием рельефа местности.
Отождествление соответственных точек аэроснимков является базовым процессом технологии как машинного зрения, так и цифровой фотограмметрии, и ее совершенствованию уделяется большое внимание. Сегодня имеется целый ряд способов решения этой задачи, основанных на использовании уравнений базисных (эпиполярных) линий, метода пирамид (HRC), метода вертикальной линии (ULL), метода динамического программирования и др.; активно разрабатывается метод структурной (реляционной) корреляции, устанавливающей соответствия между элементами сопоставляемых структурных описаний. Практическое применение этих методов позволит в перспективе полиостью автоматизировать процесс отождествления точек снимков.
Заметим, что если точность монокулярного измерения координат точек цифровых снимков ограничивается их геометрическим разрешением, то точность их идентификации и измерения координат на смежном снимке всегда может быть выполнена с субпиксельной (подпик-ссльной) точностью, что и объясняет высокую точность фотограмметрических обработки цифровых изображений.