
- •1.Условия и характер обледенения ла. Назначение, принцип работы типовых электрических противообледенительных систем и систем сигнализации обледенения.
- •2. Назначение, состав и принцип работы противообледенительной системы самолета Ан-26.
- •3. Назначение, состав и принцип работы противообледенительной системы вертолета Ми-8.
- •Противообледенительное оборудование остекления кабин.
- •4. Источники и специфика пожаров на летательных аппаратах. Состав, классификация и принцип действия типовых систем сигнализации и тушения пожара.
- •Датчики противопожарных систем.
- •Типовые системы пожарной сигнализации
- •5. Назначение, состав и принцип действия систем сигнализации и тушения пожара самолета Ан-26.
- •6. Назначение, состав и принцип действия систем сигнализации и тушения пожара вертолета Ми-8.
- •7. Назначение, состав и принцип действия системы автоматического регулирования давления и температуры воздуха в кабинах.
- •2.3. Влияние скорости изменения давления воздуха на жизнедеятельность человека
- •8. Методы измерения параметров силовых установок и систем летательного аппарата. Контролируемые параметры.
- •9. Назначение приборов контроля работы силовых установок и систем летательного аппарата. Требования, предъявляемые к ним.
- •10. Приборы и системы для измерения температуры и контроля состояния масляных систем двигателя.
- •11. Авиационные тахометры – назначение, состав, принцип действия.
- •12. Аппаратура контроля вибраций турбин силовых установок и коробок самолетных агрегатов – назначение, состав, принцип действия.
- •13. Назначение, классификация и принцип действия приборов для измерения расхода и количества топлива.
- •14. Типы, конструкция и работа авиационных расходомеров.
- •15. Типы, конструкция и работа авиационных топливомеров.
- •16. Приборы для указания положения элементов ла – назначение, состав, принцип действия.
- •17. Приборы для измерения времени и перегрузок, сигнализаторы уровня и давления топлива.
- •18. Лётная и техническая эксплуатация приборов контроля работы силовых установок. Характерные отказы и способы их выявления и устранения.
- •19. Лётная и техническая эксплуатация топливоизмерительных систем и приборов контроля отдельных систем и агрегатов ла. Характерные отказы и способы их выявления и устранения.
- •20. Системы централизованной заправки топливом и автоматы управления выработкой топлива по замкнутой схеме.
- •21. Электрические системы измерения и расхода топлива.
- •22. Электрические системы управления выработкой и заправкой топлива.
- •23. Электрические системы измерения, расхода и выработки топлива самолёта Ан-26.
- •24. Электрические системы измерения, расхода и выработки топлива вертолёта Ми-8.
- •25. Принцип действия электрических устройств системы управления воздухозаборниками по величине приведенной частоты вращения ротора гтд.
- •26. Назначение электрифицированных систем управления входными устройствами трд и способы управления ими.
- •27. Особенности эксплуатации электрифицированных систем управления входными устройствами трд
- •28. Классификация систем запуска. Состав систем запуска силовых установок. Требования, предъявляемые к ним.
- •29. Назначение, виды, конструкция и принципы действия авиационных свечей зажигания.
- •30. Высоковольтные искровые системы зажигания – назначение и принцип действия.
- •31. Низковольтные системы зажигания – назначение и принцип действия.
- •32. Основные способы и этапы запуска гтд. Системы управления процессом запуска гтд.
- •33. Система запуска двигателя Аи-24, состав, программы управления и характеристики.
- •34. Система запуска двигателя тв3-117, состав, программы управления и характеристики.
- •35. Летная и техническая эксплуатация электрических устройств систем запуска силовых установок.
- •36. Характерные отказы электрических устройств систем запуска силовых установок и методы их предупреждения.
- •37. Принцип построения электрических и электронных систем управления режимами работы и регулирования параметров силовых установок.
- •38. Назначение, классификация систем управления режимами работы и регулирования параметров силовых установок.
- •39. Электрические системы регулирования частоты вращения роторов гтд.
- •40. Электрические системы ограничения частоты вращения роторов гтд. Электрические регуляторы предельных температур газов за турбиной.
- •41. Электрические устройства противопомпажных систем.
- •2.1.2. Запуск двигателя.
- •2.2. Отказ двигателя ру19а-300 на взлете.
- •2.3. Отказ системы прт-24.
- •2.3. Отказ системы коррекции частоты вращения ротора двигателя
- •Заключение.
- •44. Назначение, состав электрической схемы системы всережимного флюгирования лопастей воздушного винта.
- •Рнс. 16. Схема флюгирования воздушного вннта левого двигателя:
- •45. Принудительный ввод лопастей винта во флюгерное положение.
- •46. Автоматический ввод лопастей винта во флюгерное положение при уменьшении продолжительности крутящего момента.
- •47. Автоматическое флюгирование лопастей винта от датчиков по отрицательной тяге и предельным оборотам.
- •48. Частичное флюгирование. Вывод лопастей из флюгерного положения.
- •49. Назначение и классификация бортовых устройств регистрации полётных данных и наземных автоматизированных систем обработки полётной информации.
- •50. Назначение и устройство бортовой системы регистрации параметров полета сарпп-12дм.
- •Основные технические данные.
- •Принцип действия.
- •Осциллограф к-12-51д1м с накопителем размещаются в обогреваемом контейнере, установленном на амортизаторах.
- •Запись пяти разовых сигналов от датчиков дрс1-5 производится по световым лучам ламп л2-л6, включаемых транзисторными ключами тк при поступлении сигналов от датчиков.
- •51. Назначение и устройство магнитной системы регистрации параметров полетов мсрп-12-96.
- •52. Строение атмосферы и параметры стандартной атмосферы. Общие сведения о пилотажно-навигационных параметрах.
- •53. Принцип действия приборов и датчиков измерения высоты и скорости воздушного судна.
- •54. Схемы питания аэрометрических приборов и систем. Приёмники воздушного давления.
- •55. Приборы для измерения воздушных параметров герметических кабин. Измерители углов атаки и скольжения.
- •57. Лётная и техническая эксплуатация аэрометрических приборов и систем.
- •58. Гироскоп, его основные свойства и уравнения движения. Гироскопический момент. Правило прецессии.
- •59. Основные погрешности гироскопа и методы их компенсации. Системы коррекции.
- •60. Назначение, принцип действия и работа по структурной схеме авиагоризонта агд-1.
- •61. Назначение, принцип действия и работа по структурной схеме авиагоризонта агб-3к
- •62. Устройство и свойства гироскопа с двумя степенями свободы. Датчики угловых скоростей.
- •63. Назначение, принцип действия и работа выключателя коррекции вк-53рш и указателя поворотов эуп-53.
- •64. Виды курсов. Использование курсовой информации в полёте. Влияние точности измерения курса на качество решения навигационных и боевых задач.
- •65. Краткие сведения о земном магнетизме. Методы измерения курса.
- •66. Магнитные и гироскопические датчики курса (гирополукомпасы). Погрешности измерителей курса и способы их устранения.
- •67. Принцип построения курсовых систем и курсовертикалей.
- •68. Назначение, состав и режимы работы курсовой системы гмк-1а. Устройство и работа курсовой системы в режимах «Пуск», «Контроль», «гпк», «мк», «ас» и «зк».
- •Устройство и работа курсовой системы в режимах «Пуск», «Контроль», гпк, мк, ас и зк
- •69. Лётная и техническая эксплуатация курсовых систем. Особенности их эксплуатации, характерные отказы и методы их предупреждения.
- •70. Задачи и методы навигации. Способы счисления пути.
- •71. Назначение, области применения и типы инерциальных систем навигации.
- •72. Назначение, виды и принцип действия корреляционно-экстремальных навигационных систем.
- •73. Назначение, конструкция и работа астрономического компаса.
- •74. Назначение и принципы построения пнк.
- •75. Системы координат. Ла как объект управления. Законы управления
- •76. Определения сау, регулируемые параметры, управляющие воздействия и внешние возмущения
- •77. Назначение, конструкция и принцип действия автоматов демпфирования, устойчивости и безопасности. Автоматы демпфирования.
- •Автоматы устойчивости
- •Автоматы безопасности
- •78. Автоматы регулирования управления
- •79. Принцип построения автопилотов и законы управления ими.
- •80. Автопилот ап – 28а
- •81. Назначение, состав и принцип действия автопилота ап-34б.
15. Типы, конструкция и работа авиационных топливомеров.
Поплавковые топливомеры. В качестве примера поплавкового топливомера рассмотрим электромеханический бензомер типа СБЭС (суммирующий бензиномер электрический с сигнализацией остатка топлива). В комплект прибора входят: датчики, размещённые в баках, указатель, переключатель, система сигнализации и линия связи.
Датчик ( рис. а ) преобразует перемещение поплавка 3 в зависимости от уровня топлива с помощью передаточного механизма в перемещение щётки потенциометра 9. Сильфон 4 обеспечивает герметизацию внутреннего пространства бака и подвижность передаточного механизма. Потенциометр датчика ( рис. б ) включён в измерительную схему, подобную схему, подобную схеме манометра типа ЭДМУ. В бензиномере типа СБЭС применён логометрический указатель с подвижными рамками и неподвижным магнитом. Бензиномер имеет один указатель на две группы баков. С помощью переключателя его можно подключить к левой или правой группе баков, а также ко всем бакам, замеряя суммарное количество топлива.
При критическом остатке топлива замыкается контакт 11 и в цепи сигнализации включается лампа. Для создания указателя с равномерной шкалой каркас потенциометра профилируют с учётом функциональной зависимости объёма топлива в баке от его уровня.
Методические ошибки поплавковых топливомеров определяются ускорениями, действующими на поплавок при эволюциях ЛА, стояночными углами ЛА и прогибом крыльев, в которых находятся баки с топливом, под действием аэродинамических сил. Основная инструментальная погрешность топливомеров является следствием изменения параметров электрической схемы от температуры окружающей среды. Суммарная приведённая погрешность поплавковых топливомеров достигает ± 5% в рабочем диапазоне шкалы. При эксплуатации поплавковых топливомеров возможны следующие дефекты: нарушение герметичности датчика, нарушение контакта между щёткой и потенциометром, отказ системы сигнализации из-за разрегулировки или загрязнения контактов, деформация рычагов и потеря плавучести поплавка из-за его разгерметизации. Вследствие этого на ЛА широко применяются ёмкостные топливомеры, которым не свойственны перечисленные дефекты.
Ёмкостные топливомеры. На современных летательных аппаратах эти топливомеры нашли наибольшее применение.
Датчиком топливомера типа СПУТ (система программного управления и измерения топлива) является размещённый в баке цилиндрический конденсатор, обкладками которого служит набор коаксиально расположенных труб. Вследствие разных диэлектрических постоянных топлива и газовой среды в свободной от топлива части бака ёмкость конденсатора
Сх = К1 + К2h,
где К1, К2 – постоянные коэффициенты, зависящие от параметров конструкции датчика и диэлектрических постоянных топлива и газовой среды;
h – высоты уровня топлива в баке.
Но из-за изменения площади поперечного сечения бака S в зависимости от h прямой пропорциональности между массой топлива m и уровнем h не существует. Чтобы получить необходимую зависимость Сх = f(m) и, как следствие, равномерную шкалу указателя, проградуированную в массовых единицах, профилируют обкладки датчиков в соответствии с изменением S.
Рис.2 Схема емкостного топливомера
Принцип действия измерительной части топливомера основан на измерении ёмкости с помощью схемы самобалансирующего моста 1. Он состоит из датчиков Сх и С1, постоянной ёмкости С2, резисторов R1 и R2, необходимых для регулировки при нулевом количестве топлива, и резисторов R3, R4, R5 и R6. Конденсатор С1 предназначен для исключения протекания постоянного тока через датчик в случае короткого замыкания в усилителе А. Так как С1 >> Сх, то ёмкость датчиков определяется значением Сх. При сухих баках, изменяя сопротивление R1, добиваются установки стрелки указателя на нулевой отметке шкалы. Начальное значение ёмкости датчика или ёмкость сухого датчика Сх = С2 , щётка R6 занимает крайнее верхнее положение, а R3=R1 + R2 .
Если баки заполнены топливом, то с помощью сопротивления R5 стрелку указателя устанавливают на отметке шкалы, соответствующей количеству топлива. При его выработке и изменении Сх напряжение Ucd с измерительной диагонали cd подаётся на усилитель А и двигатель М. Последний через редуктор, изменяя сопротивление R6, уравновешивает мост 1 и перемещает стрелку на угол α, который пропорционален Сх. Показание стрелки по шкале указателя определяет количество оставшегося топлива в баке. Питание схема осуществляется напряжением 115 В 400 Гц.
В современных топливомерах, которые градуируются в массовых единицах, имеются устройства температурной компенсации. Они устраняют методическую погрешность, которая возникает в топливомере из-за изменения плотности диэлектрической постоянной при изменении температуры топлива. Такое устройство представляет собой мост 2, плечами которого являются: компенсационный ёмкостный датчик Сk , цепочка C3R7 и вторичные обмотки w2 и w3 трансформатора Тр2. Датчик Ck , состоящий из нескольких прямоугольных пластин, заключённых в трубчатый корпус, помещается в нижнюю часть бака, из которого топливо вырабатывается в последнюю очередь. Следовательно, он всегда погружен в топливо и его ёмкость может изменятся только вследствие изменения диэлектрической постоянной εТ . Мост 2 уравновешен при температуре + 200 С, для которой произведена тарировка схемы. Если при постоянном количестве топлива в баках температура его измениться, то на измерительной диагонали моста 1 появиться напряжение Ucd . На измерительной диагонали моста 2 возникает напряжение Uef = Ued , но противоположное по фазе. На входе усилителя А они компенсируют друг друга и не вызывают изменения положения стрелки топливомера. Приращение ёмкости датчика Сх при изменении температуры на один градус зависит от значения этой ёмкости, которая уменьшается с выработкой топлива. Поэтому необходимо уменьшить напряжение компенсации Uef . Это достигается изменением напряжения Uk в диагонали питания моста 2 с помощью потенциометра R8, щётка которого связана с двигателем М через редуктор.
С помощью рассмотренной схемы измеряется не только количество топлива в отдельных баках, но и суммарный запас топлива в группах баков. Для этого с помощью переключателя и коммутирующих реле изменяются сопротивления резисторов R1 – R3 и ёмкость конденсатора С2, а датчики, установленные в баках, подключаются параллельно Сх.