
- •Мета і задачі експериментальних досліджень..
- •Засоби експериментальних досліджень.
- •Переміщення і деформації. Загальна характеристика засобів.
- •Вимірювання переміщень.
- •Визначення деформацій.
- •Обробка результатів вимірювання деформацій.
- •Загальні поняття визначення напружень в елементах будівельних конструкцій.
- •Фізичні основи визначення напружень.
- •Визначення напружень за результатами тензометрії
- •Енергетичні методи визначення напружень.
- •Методи визначення напружень в елементах будівельних конструкцій. Вимірювання напружень датчиками.
- •Поляризаційно-оптичний метод.
- •Рентгенографічний метод.
- •Метод магнітопружності.
- •Метод, заснований на використанні п’єзорезистивного ефекту.
- •Вимірювання напружень датчиками. Магнітопружні датчики
- •Загальні положення при обстеженні конструкцій, будівель та споруд.
- •Зміст обстежень
- •Освідчення об'єкту
- •Способи реєстрації осад і тріщин
- •Контроль якості матеріалів і з'єднань.
- •Перерахунки конструкцій і висновки за результатами обстежень
- •Неруйнівні методи випробування матеріалів.
- •Механічні методи визначення поверхневої твердості.
- •Стандартні механічні методи
- •Методи місцевих руйнувань
- •Загальні дані
- •Для визначення міцності металу
- •Для визначення міцності бетону.
- •Для визначення міцності деревини.
- •Методи пружнього відскоку
- •Метод стрілянини
- •Ультразвуковий імпульсний метод
- •Радіометричний метод
- •Резонансний метод
- •Дефектоскопія будівельних конструкцій. Акустичні методи.
- •Випробування статичним навантаженням. Основи планування випробування.Оцінка стану конструкцій за результатами статичних випробувань
- •Задачі статичних випробувань.
- •Вибір зразків для випробування
- •Вибір схеми завантаження. Способи створення і контроль завантаження. Вибір схеми завантаження
- •Способи створення і контроль завантаження
- •Розподілене навантаження.
- •Зосереджене навантаження
- •Оцінка стану конструкцій за результатами статичних випробувань.
- •Тому, при оцінці результатів випробувань за умову надійності приймають таку:
- •Якщо то конструкцію слід підсилювати Вимірювальні прилади для проведення випробувань будівельних конструкцій
- •Індикатор годинникового типу:
- •Кутові переміщення
- •Деформації зсуву
- •Електротензометрування.
- •Випробування конструкцій динамічним навантаженням-загальні положення. Проведення динамічних випробувань.
- •Види коливань і їх характеристики
- •Випробування конструкцій динамічним навантаженням.
- •Динамічні навантаження.
- •Мета і задачі динамічних випробувань
- •Проведення динамічних випробувань.
- •Вимірювання параметрів
- •Якщо поруч здосліджуваною конструкцією немає нерухомої рамки, її створюють штучно, використовуючи інерційну масу. На рис. 5 показана схема приладу а.М. Ємельянова і в.Ф. Смотрова.
- •Обробка результатів динамічних випробувань
Вимірювання параметрів
При динамічних випробуваннях так само, як і при статичних, визначають переміщення, деформації і зусилля. Крім того, установлюються такі динамічні характеристики конструкцій, як частота і прискорення коливань, форма коливань, швидкість загасання коливань.
Для цього служить віброрамка, креслення якої приведено на рис. 3.
Віброрамка являє собою трикутник з підставкою 20 мм і висотою, рівною десятикратному розміру підставки. Висота трикутника поділяється на 10 рівних частин. Виміри виброрамкою можна робити при частотах коливань більш 7 Гц і постійних амплітудах. Принцип її роботи заснований на инерційності людського зору. При коливаннях наклеєної на конструкцію віброрамки в полі зору утвориться розмите тло з темним клином, що виділяється на ньому. З подоби трикутників амплітуда дорівнює:
Гарні результати дає фотографування віброрамки з відповідною витримкою.
До числа найпростіших приладів відноситься індикатор годинникового типу. Індикатор закріплений на нерухомій рамці, не зв'язаній з випробовуваною конструкцією (рис 4). Його рухливий шток упирається в коливну конструкцію. При частоті коливань більш 7 Гц зображення стрілки зливається в затемнений сектор. Проти його меж беруть відліки по більшій шкалі індикатора.
Якщо поруч здосліджуваною конструкцією немає нерухомої рамки, її створюють штучно, використовуючи інерційну масу. На рис. 5 показана схема приладу а.М. Ємельянова і в.Ф. Смотрова.
Амплитудомір складається з підставки 1, до якої за допомогою листових пружин 2 кріпиться обойма 3, використовувана за інерційну масу. Корпус індикатора 4 кріпиться до обойми, а його рухливий шток упирається в підставку, що коливається разом з конструкцією. Коливання викликають переміщення стрілки індикатора, що утворить затінений сектор.
Вимір частоти коливань. Для виміру частот можуть застосовуватися язичкові частотоміри. Багатоязичковий частотомір (рис. 6а) складається з набору пластинчастих пружин з вантажами на кінцях.
Язички мають різні частоти власних коливань. Частотомір установлюють на випробовувану конструкцію так, щоб напрямок коливань був перпендикулярний язичкам. Якщо частота коливань конструкції лежить у діапазоні виміру приладу, то один з язичків попадає в резонанс і амплітуда його коливань буде помітно відрізнятися від інших. По маркуванню на корпусі приладу визначають частоту коливань конструкції.
В одно-язичковому частотомірі (рис.6б) довжина пластинки, а значить і власна частота, регулюється за допомогою затискного гвинта.
Домагаючись резонансу, по шкалі приладу визначають частоту коливань.
Реєстрація динамічних процесів найбільше точно здійснюється самописними приладами, світло- та електронно-випромінювальними осцилографами і магнітографами.
Найбільш відомим механічним приладом є віброграф Гейгера (рис.7)
У порожньому циліндричному корпусі 1 поміщена інерційна маса 2, підвішена на сталевій спіральній пружині 3. Якщо прилад закріпити на конструкції, то інерційна маса буде нерухомою, а коливання корпуса через систему важелів передадуться на пишуче перо 4. Запис віброграмы виробляється на паперовій стрічці, що рухається, 5, що перемотується механізмом, поміщеним у корпусі приладу. Стрічкопротягувальний механізм забезпечує різні швидкості переміщення стрічки.
До ручних вібрографів відноситься прилад типу ВР-1 (рис. 8). Корпус 2 приладу тримають у руках чи закріплюють на нерухомому штативі, а шток 1 упирають в досліджувану конструкцію. система 3 забезпечує збільшення масштабу запису. Запис віброграмм здійснюється пером, що дряпає, на вощеному папері 4. Ручним вібрографом можна вимірювати коливання в діапазоні частот 5...100 Гц.
Найбільш широке поширення одержали в даний час дистанційно працюючі віброперетворювачі, установлювані на випробовувану конструкцію і перетворюючі механічні коливання в перемінний електричний сигнал. Віброперетворювачі є первинними приладами - датчиками. Сигнал від них записується вторинними приладами, поміщеними на визначеній відстані від випробовуваної конструкції.
Первинні вимірювальні пристрої по своєму призначенню підрозділяються на датчики переміщень (віброметри), датчики прискорень (акселерометри), датчики деформацій (тензометри).
Відповідно ГОСТ 16819-71 первинні віброперетворювачі підрозділяються на пасивні, що виробляють при вимірах електрорушувальну силу, і активні, що вимірюють при роботі який-небудь електричний параметр, наприклад, ємність, чи індуктивність або опір.
З числа пасивних найбільше застосування знайшли індукційні віброперетворювачі (рис. 9)
Індукційний елемент перетворювача складається з постійного магніту й електричної котушки. Постійний магніт має маятникову підвіску до корпуса і служить інерційною масою, що переміщається щодо котушки, жорстко прикріпленої до корпуса. У результаті виробляється ЕДС із частотою, рівною частоті коливань конструкції, на яку установлений датчик. Серійно випускаються наступні віброперетворювачі: ВЭГИК, ИОО, ВБП -3 і ін.
Для виміру переміщень і деформацій найбільше широко застосовуються резистивні віброперетворювачі чи тензорезистори.
На відміну від статичних випробувань на кожний активних тензорезистор потрібно свій тензопідсилювач. Тому дуже важливе питання ощадливого розташування датчиків на випробовуваній конструкції.