
- •Описание
- •Пример работы сети 100vg-AnyLan при передаче кадров данных
- •24. Гвс с использованием выделенных каналов.
- •Гвс с коммутацией каналов.
- •Гвс с коммутацией пакетов.
- •Технология х.25.
- •Адресация в сетях х.25.
- •Стек протоколов сети х.25.
- •Технология Frame Relay.
- •38) Модель взаимодействия открытых систем osi
- •41.Канальный уровень модели osi.
- •42.Сетевой уровень модели osi.
- •43.Транспортный уровень модели osi.
- •44.Технология тср/ip.
- •45.Многоуровневая структура стека tcp/ip.
- •46.Локальные адреса стека tcp/ip.
- •47.Сетевые адреса стека tcp/ip.
- •48.Доменные имена стека tcp/ip.
- •49.Формат iр - адреса. Классы адресов.
- •50.Формат ip-пакета.
- •51.Маршрутизация в ip-сетях без таблиц.
- •Дистанционно-векторные алгоритмы маршрутизации.
- •Адаптивная маршрутизация. Алгоритмы состояния связей.
- •Этапы построения таблицы маршрутизации на основе протокола rip.
- •Этапы построения таблицы маршрутизации на основе протокола ospf.
- •Протокол глобальной маршрутизации bgp.
- •Технология cidr.
- •Электронная почта (e-mail) на основе протокола smpt.
- •Технология защищенного канала ssl.
- •Технология защищенного канала ipSec.
- •Транспортный режим защиты данных на основе протоколов ан и esp.
- •Туннельный режим защиты данных на основе протоколов ан и esp.
Стек протоколов сети х.25.
Протокол физического уровня не оговорен, и это дает возможность использовать каналы разных стандартов
На физическом уровне определены синхронные интерфейсы Х.121 и Х.121 bis к оборудованию передачи данных – DSU/CSU, если выделенный канал является цифровым, синхронному модему, если канал аналоговый.
На канальном Уровне используется подмножество протоколов HDLC, обеспечивающее возможность автоматической передачи в случае возникновения ошибок в линии. Предусмотрен выбор из двух процедур доступа к каналу: LAP или LAP-B. Обычно используется LAP-B. Он обеспечивает сбалансированный режим работы (оба узла, участвующие в соединении, равноправны). По протоколу LAP-B устанавливается соединение между пользовательским оборудованием (компьютер, маршрутизатор-IP или IPX) и коммутатором сети. Возможно также установление соединения на канальном уровне внутри сети между непосредственно связанными коммутаторами.
Кадр LAP-B содержит однобайтовое адресное поле, в котором указывается направление передачи кадра:
0*01 – для направления команд от DTE к DCE (в сеть) или ответов от DCE к DTE (из сети);
0*03 – для направления ответов от DTE к DCE или команд от DCE к DTE.
На сетевом уровне определен протокол Х.25/3 обмена пакетами между оконечным оборудованием и сетью. Сетевой уровень Х.25/3 (в стандарте он назван пакетным уровнем) реализуется с использованием 14 различных типов пакетов по назначению аналогичных типам кадров протокола LAP-B. Так как надежную передачу данных обеспечивает протокол LAP-B, протокол Х.25/3 выполняет функции маршрутизации пакетов, установления и разрыва виртуального канала между оконечными абонентами сети, управления потоком пакетов
Технология Frame Relay.
Сеть Frame Relay является сетью с коммутацией кадров или сетью с ретрансляцией кадров, ориентированной на использование цифровых линий связи. Первоначально технология Frame Relay была стандартизирована как служба в сетях ISDN со скоростью передачи данных до 2 Мбит/с. В дальнейшем эта технология получила самостоятельное развитие. Frame Relay поддерживает физический и канальный уровни OSI. Технология Frame Relay использует для передачи данных технику виртуальных соединений (коммутируемых и постоянных).
Стек протоколов Frame Relay передает кадры при установленном виртуальном соединении по протоколам физического и канального уровней. В Frame Relay функции сетевого уровня перемещены на канальный уровень, поэтому необходимость в сетевом уровне отпала. На канальном уровне в Frame Relay выполняется мультиплексирование потока данных в кадры.
Каждый кадр канального уровня содержит заголовок, содержащий номер логического соединения, который используется для маршрутизации и коммутации трафика. Frame Relay - осуществляет мультиплексирование в одном канале связи нескольких потоков данных. Кадры при передаче через коммутатор не подвергаются преобразованиям, поэтому сеть получила название ретрансляции кадров. Таким образом, сеть коммутирует кадры, а не пакеты. Скорость передачи данных до 44 Мбит/с, но без гарантии целостности данных и достоверности их доставки.
Frame Relay ориентирована на цифровые каналы передачи данных хорошего качества, поэтому в ней отсутствует проверка выполнения соединения между узлами и контроль достоверности данных на канальном уровне. Кадры передаются без преобразования и контроля как в коммутаторах локальных сетей. За счет этого сети Frame Relay обладают высокой производительностью. При обнаружениях ошибок в кадрах повторная передача кадров не выполняется, а искаженные кадры отбраковываются. Контроль достоверности данных осуществляется на более высоких уровнях модели OSI.
Сети Frame Relay широко используется в корпоративных и территориальных сетях в качестве:
1) каналов для обмена данными между удаленными локальными сетями (в корпоративных сетях);
2) каналов для обмена данными между локальными и территориальными (глобальными) сетями.
Технология Frame Relay (FR) в основном используется для маршрутизации протоколов локальных сетей через общие (публичные) коммуникационные сети. Frame Relay обеспечивает передачу данных с коммутацией пакетов через интерфейс между оконечными устройствами пользователя DTE (маршрутизаторами, мостами, ПК) и оконечным оборудованием канала передачи данных DCE (коммутаторами сети типа "облако").
Коммутаторы Frame Relay используют технологию сквозной коммутации, т.е. кадры передаются с коммутатора на коммутатор сразу после прочтения адреса назначения, что обеспечивает высокую скорость передачи данных. В сетях Frame Relay применяются высококачественные каналы передачи, поэтому возможна передача трафика чувствительного к задержкам (голосовых и мультимедийных данных). В магистральных каналах сети Frame Relay используются волоконно-оптические кабели, а в каналах доступа может применяться высококачественная витая пара.
Достоинства сети Frame Relay:
- высокая надежность работы сети;
- обеспечивает передачу чувствительный к временным задержкам трафик (голос, видеоизображение).
Недостатки сети Frame Relay:
- высокая стоимость качественных каналов связи;
- не обеспечивается достоверность доставки кадров.
31) Стек протоколов Frame Relay
Технология Frame Relay использует для передачи данных технику виртуальных соединений, аналогичную той, которая применялась в сетях Х.25, однако стек протоколов Frame Relay передает кадры (при установленном виртуальном соединении) по протоколам только физического и канального уровней, в то время как в сетях Х.25 и после установления соединения пользовательские данные передаются протоколом 3-го уровня. Кроме того, протокол канального уровня LAP-F в сетях Frame Relay имеет два режима работы: основной (core) и управляющий (control). В основном режиме, который физически практикуется в сегодняшних сетях Frame Relay, кадры передаются без преобразования и контроля, как и в коммутаторах локальных сетей. За счет данной особенности описываемой технологии она обладает высокой производительностью, а сеть не передает квитанции подтверждения между коммутаторами на каждый пользовательский кадр, как это происходит в сети Х.25. Пульсации трафика передаются достаточно быстро и без больших задержек.При таком подходе уменьшаются накладные расходы при передаче пакетов локальных сетей, так как они вкладываются сразу в кадры канального уровня, а не в пакеты сетевого уровня, как это происходит в сетях, построенных на базе технологии Х.25.Структура стека Frame Relay хорошо отображает ее происхождение в недрах технологии ISDN, так как сети Frame Relay заимствуют многое из стека протоколов ISDN, особенно в процедурах установления коммутируемого виртуального канала.Основу технологии составляет протокол LAP-F core, который является весьма упрощенной версией протокола LAP-D. Протокол LAP-F (стандарт Q.922 ITU-T) работает на любых каналах сети ISDN, а также на каналах типа T1/E1.Терминальное оборудование посылает в сеть кадры LAP-F, в любой момент времени считая, что виртуальный канал в сети коммутаторов уже проложен. При использовании PVC оборудованию Frame Relay нужно поддерживать только протокол LAP-F core.Протокол LAP-F control является необязательной надстройкой над LAP-F core, которая выполняет функции контроля доставки кадров и управления потоком. С помощью протокола LAP-F control сетью реализуется служба switching.Для установки коммутируемых виртуальных каналов стандарт ITU-T предлагает канал D пользовательского интерфейса. На нем работает протокол LAP-D, который используется для надежной передачи кадров в сетях ISDN. Поверх этого протокола работает протокол Q.931 или протокол Q.933 (который является упрощением и модификацией протокола Q.931 ISDN), устанавливающий виртуальное соединение на основе адресов конечных абонентов (в стандарте Е.164 или ISO 7498), а также номера виртуального соединения, которое в технологии Frame Relay носит название Data Link Connection Identifier (DLCI). Для каждого виртуального соединения определяется несколько параметров, влияющих на качество обслуживания: CIR (Commited Information Rate) – согласованная информационная скорость, с которой сеть будет передавать данные пользователя; Bc (Commited Burst Size) – согласованный объем пульсации, то есть максимальное количество байт, которое сеть будет передавать от этого пользователя за интервал времени Т; Be (Excess Burst Size) – дополнительный объем пульсации, то есть максимальное количество байт, которое сеть будет пытаться передать сверх установленного значения Bc за интервал времени T. Основным параметром, по которому абонент и сеть заключают соглашение при установлении виртуального соединения, является согласованная скорость передачи данных. Для постоянных виртуальных каналов это соглашение является частью контракта на пользование услугами сети. При установлении коммутируемого виртуального канала соглашение о качестве обслуживания заключается автоматически с помощью протокола Q.931/933. Требуемые параметры CIR, Bc, Be передаются в пакете запроса на установление соединения.
32) Структура кадра протокола LАР-F сети Frame Relay
Кадр Frame Relay имеет небольшое отличие от типичной структуры в заголовке. Формат кадра Frame Relay с нормальным двухбайтовым заголовком показан на рисунке 5.
|
Приведем назначение полей заголовка кадра FR:
DLCI - идентификатор соединения;
C/R - поле прикладного назначения, не используется протоколом FR и передается по сети прозрачно;
EA - определяет 2-х, 3-х или 4-х байтовое поле адреса;
FECN - информирует узел назначения о заторе;
BECN - информирует узел-источник о заторе;
DE - идентифицирует кадры, которые могут быть сброшены в случае затора.
33) Аналоговые телефонные сети
Аналоговые телефонные сети относятся к глобальным сетям с коммутацией каналов, которые создавались для предоставления общедоступных телефонных услуг населению. Аналоговые телефонные сети ориентированы на соединение, которое устанавливается до начала ведения разговоров (передачи голоса) между абонентами. Телефонная сеть образуется (коммутируется) с помощью коммутаторов автоматических телефонных станций. Телефонные сети состоят из:
автоматических телефонных станций (АТС);
телефонных аппаратов;
магистральных линий связи (линий связи между АТС);
абонентских линий (линий, соединяющих телефонные аппараты с АТС); Абонент имеет выделенную линию, которая соединяет его телефонный аппарат с АТС. Магистральные линии связи используются абонентами по очереди. Аналоговые телефонные сети используются также и для передачи данных в качестве:
сетей доступа к сетям с коммутацией пакетов, например, подключения к Интернет (применяются как коммутируемые, так и выделенные телефонные линии);
магистралей пакетных сетей (в основном применяются выделенные телефонные линии). Аналоговая телефонная сеть с коммутацией каналов предоставляет для пакетной сети услуги физического уровня, которая после коммутации является физическим каналом "точка-точка". Обычная телефонная сеть или POTS (Plain Old Telephone Service – старый “плоский” телефонный сервис) обеспечивает пропускание голосового сигнала между абонентами с диапазоном частот до 3,1 кГц, что является вполне достаточным для нормального разговора. Для связи с абонентами используется двухпроводная линия, по которой сигналы обоих абонентов во время разговора идут одновременно во встречных направлениях. Телефонная сеть состоит из множества станций, имеющих иерархические соединения между собой. Коммутаторы этих станций прокладывают путь между АТС вызывающего и вызываемого абонента под управлением информации, предоставляемой системой сигнализации. Магистральные линии связи между телефонными станциями должны обеспечивать возможность одновременной передачи большого количества информации (поддерживать большое количество соединений). Выделять для каждого соединения отдельную магистральную линию нецелесообразно, и для более эффективного использования физических линий применяют:
метод частотного уплотнения каналов;
цифровые каналы и мультиплексирование цифровых потоков от множества абонентов.
34)Коммутируемые цифровые каналы
Что же такое коммутатор?
Согласно определению IDC «коммутатор — это устройство, конструктивно выполненное в виде концентратора и действующее как высокоскоростной многопортовый мост: встроенный механизм коммутации позволяет осуществлять сегментирование локальной сети и выделять полосу пропускания конечным станциям в сети".
Другими словами, коммутаторы 2-го уровня являются по сути обычными очень быстрыми многопортовыми мостами на основе стандарта IEEE 802.Id.
Концепция работы коммутатора 2-го уровня очень проста. Рассмотрим в качестве примера функционирование узла А (рис. 1.). Любой кадр, отправленный узлом А и имеющий адрес получателя в узле на сегменте Бета (например, Q), приходит в порт 1 коммутатора 2-го уровня и выходит из порта 2, чтобы быть полученным узлом Q. Этот процесс называется ретрансляцией (forwarding). Говорят, что кадр ретранслирован, если он получен одним портом коммутатора 2-го уровня и передан через другой.
Кадр, переданный узлом А и имеющий адрес получателя, который соответствует узлу В, естественно, приходит и на узел В, и на коммутатор 2-го уровня. Тем не менее коммутатор 2-го уровня знает, что узлы А и В находятся в одном сегменте, поэтому кадр не ретранслируется. Данный процесс называется фильтрацией (filtering). Говорят, что кадр отфильтрован, если он получен одним портом коммутатора и не ретранслирован другим.
Обратите внимание, что, мы используем термин «кадр», а не «пакет». Коммутатор — это устройство уровня 2, которое оперирует кадрами, а не пакетами как повторитель. Коммутатор работает с кадрами и понимает адреса MAC. Повторитель работает только с пакетами, в которых содержатся кадры. Порт коммутатора, как и узла, является обычным сетевым интерфейсом со средствами MAC. Фактически коммутатор представляет собой узел. обладающий несколькими сетевыми интерфейсами
В литературе и технических описаниях коммутаторов и некоторых сетевых устройств часто говорят, что они работают (коммутируют или маршрутизируют трафик) на полной скорости канала (wire speed). Что это значит? Предположим, в ходе тестирования выяснилось, что устройство маршрутизирует 20 потоков Ethernet на полной скорости канала. Следовательно, оно маршрутизирует пакеты с такой же скоростью, с какой они поступали по 20 каналам Ethernet. При размере пакета 64 байт мы получаем скорость маршрутизации около 297 тыс. пакетов в секунду.
Важно подчеркнуть, что если маршрутизатор работает на скорости канала, то бессмысленно говорить о том, что он работает медленно.
В этом случае производительность маршрутизации определяется не скоростью работы устройства, а пропускной способностью каналов связи.
Рис. 1. Схема сети с трехпортовым мостом
Для ретрансляции кадров из одного сегмента ЛВС в другой коммутатор может использовать следующие способы коммутации:
• Cut-Through (сквозная коммутация);
• Interim Cut-Through (модифицированная сквозная коммутация);
• Store-and-Forward (накопление и ретрансляция или промежуточная буферизация);
• гибридная коммутация.
Каждый из этих способов имеет свои преимущества и недостатки.
Технология коммутации 2-го уровня обеспечивает высокую производительность, позволяет строить достаточно сложные сети, являющиеся широковещательными доменами (областями).
.
35) Технология ISDN
ISDN (англ. Integrated Services Digital Network) — цифровая сеть с интеграцией служб. Позволяет совместить услуги телефонной связи и обмена данными. Основное назначение ISDN — передача данных со скоростью до 64 кбит/с по абонентской проводной линии и обеспечение интегрированных телекоммуникационных услуг (телефон, факс, и пр.). Использование для этой цели телефонных проводов имеет два преимущества: они уже существуют и могут использоваться для подачи питания на терминальное оборудование. Выбор 64 кбит/c стандарта определяется следующими соображениями. При полосе частот 4 кГц, согласно теореме Котельникова, частота дискретизации должна быть не ниже 8 кГц. Минимальное число двоичных разрядов для представления результатов стробирования голосового сигнала при условии логарифмического преобразования равно 8. Таким образом, в результате перемножения этих чисел (8 кГц * 8 (число двоичных разрядов) = 64) и получается значение полосы B-канала ISDN, равное 64 кб/с. Базовая конфигурация каналов имеет вид 2 × B + D = 2 × 64 + 16 = 144 кбит/с. Помимо B-каналов и вспомогательного D-канала ISDN может предложить и другие каналы с большей пропускной способностью: канал Н0 с полосой 384 кбит/с, Н11 — 1536 кбит/c и Н12 — 1920 кбит/c (реальные скорости цифрового потока). Для первичных каналов (1544 и 2048 кбит/с) полоса D-канала может составлять 64 кбит/с. Для объединения в сети ISDN различных видов трафика используется технология TDM (англ. Time Division Multiplexing, мультиплексирование по времени). Для каждого типа данных выделяется отдельная полоса, называющаяся элементарным каналом (или стандартным каналом). Для этой полосы гарантируется фиксированная, согласованная доля полосы пропускания. Выделение полосы происходит после подачи сигнала CALL по отдельному каналу, называющемуся каналом внеканальной сигнализации.
В стандартах ISDN определяются базовые типы каналов, из которых формируются различные пользовательские интерфейсы.
Тип |
Полоса |
Описание |
A |
— |
Аналоговая телефонная линия, 4кГц. |
B |
64 кб/с |
передача данных или 1 телефонная линия (1 поток оцифрованного звука) |
C |
8/16 кб/с |
передача данных |
D |
16/64 кб/с |
Канал внеканальной сигнализации (управление другими каналами) |
E |
64 кб/с |
Внутренняя сигнализация ISDN |
H0 |
384 кб/с |
передача данных |
H10 |
1472 кб/с |
передача данных |
H11 |
1536 кб/с |
передача данных |
H12 |
1920 кб/с |
передача данных |
В большинстве случаев применяются каналы типов B и D.Из указанных типов каналов формируются интерфейсы, наибольшее распространение получили следующие типы:
Сеть ISDN состоит из следующих компонентов:
сетевые терминальные устройства (NT, англ. Network Terminal Devices)
линейные терминальные устройства (LT, англ. Line Terminal Equipment)
терминальные адаптеры (TA, англ. Terminal adapters)
Абонентские терминалы
Абонентские терминалы обеспечивают пользователям доступ к услугам сети. Существует два вида терминалов: TE1 (специализированные ISDN-терминалы), TE2 (неспециализированные терминалы). TE1 обеспечивает прямое подключение к сети ISDN, TE2 требуют использования терминальных адаптеров (TA).
36) Пользовательские интерфейсы ISDN
Пользовательские интерфейсы ISDN
Одним из базовых принципов ISDN является предоставление пользователю стандартного интерфейса, с помощью которого пользователь может запрашивать у сети разнообразные услуги. Этот интерфейс образуется между двумя типами оборудования, устанавливаемого в помещении пользователя (Customer Premises Equipment, СРЕ): терминальным оборудованием пользователя ТЕ (компьютер с соответствующим адаптером, маршрутизатор, телефонный аппарат) и сетевым окончанием NT, которое представляет собой устройство, завершающее канал связи с ближайшим коммутатором ISDN.
Пользовательский интерфейс основан на каналах трех типов:
В - со скоростью передачи данных 64 Кбит/с;
D - со скоростью передачи данных 16 или 64 Кбит/с;
Н - со скоростью передачи данных 384 Кбит/с (НО), 1536 Кбит/с (НИ) или 1920 Кбит/с (Н12).Каналы типа В обеспечивают передачу пользовательских данных (оцифрованного голоса, компьютерных данных или смеси голоса и данных) и с более низкими скоростями, чем 64 Кбит/с. Разделение данных выполняется с помощью техники TDM. Разделением канала В на подканалы в этом случае должно заниматься пользовательское оборудование, сеть ISDN всегда коммутирует целые каналы типа В. Каналы типа В могут соединять пользователей с помощью техники коммутации каналов друг с другом, а также образовывать так называемые полупостоянные (semipermanent) соединения, которые эквиваленты соединениям службы выделенных каналов. Канал типа В может также подключать пользователя к коммутатору сети Х.25.Канал типа D выполняет две основные функции. Первой и основной является передача адресной информации, на основе которой осуществляется коммутация каналов типа В в коммутаторах сети. Второй функцией является поддержание услуг низкоскоростной сети с коммутацией пакетов для пользовательских данных. Обычно эта услуга выполняется сетью в то время, когда каналы типа D свободны от выполнения основной функции.Каналы типа Н предоставляют пользователям возможности высокоскоростной передачи данных. На них могут работать службы высокоскоростной передачи факсов, видеоинформации, качественного воспроизведения звука. Пользовательский интерфейс ISDN представляет собой набор каналов определенного типа и с определенными скоростями.Сеть ISDN поддерживает два типа пользовательского интерфейса - начальный (Basic Rate Interface, BRI) и основной (Primay Rate Interface, PRI). Начальный интерфейс BRI предоставляет пользователю два канала по 64 Кбит/с для передачи данных (каналы типа В) и один канал с пропускной способностью 16 Кбит/с для передачи управляющей информации (канал типа D). Все каналы работают в полнодуплексном режиме. В результете суммарная скорость интерфейса BRI для пользовательских данных составляет 144 Кбит/с по каждому направлению, а с учетом служебной информации - 192 Кбит/с. Различные каналы пользовательского интерфейса разделяют один и тот же физический двухпроводный кабель по технологии TDM, то есть являются логическими каналами, а не физическими. Данные по интерфейсу BRI передаются кадрами, состоящими из 48 бит. Каждый кадр содержит по 2 байта каждого из В каналов, а также 4 бита канала D. Передача кадра длится 250 мс, что обеспечивает скорость данных 64 Кбит/с для каналов В и 16 Кбит/с для канала D. Кроме бит данных кадр содержит служебные биты для обеспечения синхронизации кадров, а также обеспечения нулевой постоянной составляющей электрического сигнала. Интефейс BRI может поддерживать не только схему 2B+D, но и B+D и просто D (когда пользователь направляет в сеть только пакетизированные данные).Начальный интерфейс стандартизован в рекомендации 1.430.Основной интерфейс PRI предназначен для пользователей с повышенными требованиями к пропускной способности сети. Интерфейс PRI поддерживает либо схему 30B+D, либо схему 23B+D. В обеих схемах канал D обеспечивает скорость 64 Кбит/с. Первый вариант предназначен для Европы, второй - для Северной Америки и Японии. Ввиду большой популярности скорости цифровых каналов 2,048 Мбит/с в Европе и скорости 1,544 Мбит/с в остальных регионах, привести стандарт на интерфейс PRI к общему варианту не удалось.
37) Стек протоколов ISDN
В сети ISDN существует два стека протоколов: стек каналов типа D и стек каналов типа В.
Сеть каналов типа D внутри сети ISDN служит транспортной системой с коммутацией пакетов, применяемой для передачи сообщений сигнализации. Прообразом этой сети послужила технология сетей Х.25. Для сети каналов D определены три уровня протоколов:
физический протокол определяется стандартом 1.430/431;
канальный протокой LAP-D определяется стандартом Q.921;
на сетевом уровне может использоваться протокол сигнализации Q.931, с помощью которого выполняется маршрутизация вызова абонента службы с коммутацией каналов.
Каналы типа В образуют сеть с коммутацией каналов, которая передает данные абонентов, то есть оцифрованный голос. В терминах модели OSI на каналах типа В в коммутаторах сети ISDN определен только протокол физического уровня - протокол 1.430/431. Коммутация каналов типа В происходит по указаниям, полученным по каналу D. Когда кадры протокола Q.931 маршрутизируются коммутатором, происходит одновременная коммутация очередной части составного канала от исходного абонента к конечному.Протокол LAP-D принадлежит к семейству HDLC. Протокол LAP-D обладает всеми «родовыми чертами» этого семейства, но имеет и некоторые особенности. Адрес кадра LAP-D состоит из двух байтов - один байт определяет код службы, которой пересылаются вложенные в кадр пакеты, а второй требуется для адресации одного из терминалов, если у пользователя к абонентскому окончанию подключено несколько терминалов. Терминальное устройство ISDN может поддерживать разные услуги: установление соединения по протоколу Q.931, коммутация пакетов Х.25, мониторинг сети и т. п. Протокол LAP-D обеспечивает два режима работы: с установлением соединения и без установления соединения. Последний режим используется, например, для мониторинга сети.Протокол Q.931 является сигнальным протоколом ISDN для участка пользователь-сеть, то есть протоколом типа UNI. Он переносит в своих пакетах ISDN-адрес вызываемого абонента, на основании которого и происходит настройка коммутаторов на поддержку составного канала типа В. После того как пользователь снял трубку и набрал номер вызываемого абонента, телефонный аппарат формирует пакет вызова (set up) и отправляет его по каналу D коммутатору N, к которому он подключен. Проходя через сеть, сообщения SS7 переводят промежуточные коммутаторы в состояние готовности к установлению соединения. Выходной коммутатор сети, к которому подключен аппарат вызываемого абонента, преобразует сообщение начального адреса протокола SS7 в сообщение вызова протокола Q.931, на основании которого телефонный аппарат начинает звонить. Если абонент снимает трубку, то его аппарат генерирует сообщение соединения (connect), которое в обратном порядке проходит через все промежуточные коммутаторы (преобразованное, естественно, в соответствующее сообщение SS7). При обратном проходе коммутаторы устанавливают состояние соединения, коммутируя соответствующим образом каналы типа В