Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_na_bilety_geologia_2012_pervyy_semestr.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
9.91 Mб
Скачать

Билет №41. Понятия о деформациях. Упругие и пластические деформации. Разрывные нарушения. Разрывные нарушения на геологических картах.

Понятие о деформациях. Из физики известно, что изменение объема и формы тела, вследствие приложенной к нему силы, называется деформацией. Когда мы сжимаем в руке резиновый мяч, изгибаем палку, ударяем молотком по кирпичу, во всех случаях мы имеем дело с деформацией тела вплоть до его разрушения. Причины деформаций могут быть очень разными. Это и сила тяжести, самая универсальная из всех сил; это и влияние температуры, при возрастании которой увеличивается объем; это и разбухание, например, увеличение объема пород за счет пропитывания водой; это и просто механические усилия, приложенные по определенному направлению к толще пород, и многие другие.

         Важно помнить, что любая деформация происходит во времени, которое в геологических процессах может составлять десятки миллионов лет, т.е. деформирование происходит очень медленно. Огромная длительность геологических процессов делает очень трудным их моделирование в лабораторных условиях, т.к. невозможно воспроизвести такие огромные временные интервалы.

деформации подразделяются на упругие и пластические. Упругая деформация характеризуется тем, что после снятия нагрузки тело вновь принимает исходную форму. Упругое тело всегда оказывает противодействие внешней приложенной силе, которая, будучи отнесенной, к какой-либо единице площади, называется напряжением. В деформируемом теле напряжение изменяется в разных его сечениях, поэтому мы говорим о поле напряжений данного тела, имея в виду все напряжения. РАЗРЫВНЫЕ  НАРУШЕНИЯ  СО  СМЕЩЕНИЕМ  (ПАРАКЛАЗЫ).

     Надвиговый тип нарушений. В этот тип включается целый ряд разнообразных нарушений, образованных при сжатии земной коры. Во всех этих нарушениях висячее крыло перемещается по наклонной поверхности снизу вверх в сторону лежачего крыла, а поверхность сместителя падает под поднятое крыло. В зависимости от угла наклона сместителя выделяют два вида нарушений этого типа.      Взбросом называется нарушение, когда сместитель крутой — круче 60° (по мнению некоторых, больше 45°).      Надвиг — нарушение, при котором угол наклона сместителя меньше 60° или меньше 45° . Морфологически взброс нельзя отличить от запрокинутого сброса. Поверхность сместителя в надвиге часто бывает волнистая; в таких случаях на отдельных участках надвиг может быть то положе, то круче, а иногда переходить во взброс. Плоскость сместителя чаще всего ровная, изобилует зеркалами скольжения, т. е. полированными блестящими площадками. Иногда вдоль нее наблюдается тектоническая брекчия.      Амплитуда взбросов и надвигов весьма различна: до сотен и тысяч метров. Особенно большие амплитуды надвигов наблюдаются у пологопадающих надвигов. В краевой северной части Советских Карпат наблюдается пологопадающий надвиг с амплитудой до 5—10 км. Висячее крыло этого нарушения разбито серией крутых (до 40—50°) надвигов.      Тектонический покров, или шарьяж представляет собой тектоническое нарушение надвигового типа с максимальной амплитудой перемещений 20—30 км (иногда, возможно, и больше). Плоскость сместителя в шарьяже очень полога и волниста; на отдельных участках она может падать даже в обратную сторону. В шарьяже надвинутое крыло так далеко перемещается от своего основания, именуемого корнями шарьяжа, что часто не удается установить то место, откуда произошло это надвинутое крыло. Таким образом, при шарьяже можно наблюдать, как изолированная пачка древних пород располагается над пачкой более молодых пород.. Перемещение в шарьяжном нарушении происходит обычно по какому-либо пластичному слою типа глин, мерлегей, соли и т. п. Чаще всего перемещение происходит под влиянием силы тяжести — это так называемый гравитационный шарьяж. После того как шарьяжи были описаны швейцарскими, австрийскими и французскими геологами в Альпах, их стали выделять во многих складчатых сооружениях: на Кавказе, Карпатах, Урале, в Тянь-Шане. Амплитуду некоторых из этих нарушений, так же как и альпийских, считали порядка нескольких сотен километров, В последние годы было установлено, что нарушений с такими амплитудами не существует. Надвиговые нарушения этого типа довольно редки и по амплитуде обычно не превышают 30 км.      Поддвигом называется нарушение надвигового типа, когда движение испытывает не висячее, а лежачее крыло. Встречается он довольно редко.      Сдвиговый тип нарушений. При этом типе разрывов происходят боковые горизонтальные перемещения одного крыла по отношению к другому. Амплитуда этих перемещений достаточно велика и измеряется сотнями метров, километрами, а иногда и десятками километров. Сдвиги подразделяются на правые и левые. Если смотреть по направлению движения, то в правом сдвиге оказывается отодвинутым крыло, располагающееся по правую руку, в левом — наоборот.      Смешанный тип нарушений. Обычно движение по сдвигам не бывает строго горизонтальным, а сочетается с вертикальным движением; тогда говорят о сбросо-сдвиге или сдвиго-надвиге.      Дизъюнктивные нарушения наблюдаются не только в горизонтальнолежащих породах, но и в складчатых структурах. По характеру взаимоотношений сместителя дизъюнктивного нарушения с простиранием пластов в складчатой структуре выделяют продольные, поперечные, косые, согласные и несогласные нарушения.      Продольными нарушениями называются такие, у которых направление сместителя точно или приблизительно совпадает с направлением простирания слоев; у поперечных направление сместителя идет вдоль падения или восстания пластов.      Косые нарушения секут складчатую структуру под различными углами.      Согласными нарушениями называются такие, у которых плоскость сместителя наклонена в сторону падения слоев.

Тема «ЗЕМЛЯТРЯСЕНИЯ»

Билет №42. Землетрясения. Механизм возникновения землетрясений, очаг землетрясения, гипоцентр и эпицентр. Географическое распространение и тектоническая позиция землетрясений. Типы сейсмических волн. Сейсмографы.

Механизм возникновения землетрясения и его параметры. Землетрясение тектонического типа, т.е. связанное с внутренними эндогенными силами Земли, представляет собой процесс растрескивания, идущий с некоторой конечной скоростью, а не мгновенно. Он предполагает образование и обновление множества разномасштабных разрывов, со вспарыванием каждого из них не только с высвобождением, но и перераспределением энергии в некотором объеме. Когда мы говорим о том, что сила внешнего воздействия на горные породы превысила их прочность, то следует иметь в виду, что в геомеханике четко различают прочность горных пород как материала, которая относительно высока, и прочность породного массива, включающего помимо материала горных пород еще и структурные ослабленные зоны. Благодаря последним прочность породного массива существенно ниже, чем прочность собственно пород. В большинстве случаев, хотя и не всегда, разрывы имеют сдвиговую природу, и очаг землетрясения охватывает определенный объем вокруг него. Сейсмология изучает упругие волны, распространяющиеся динамически в частотном диапазоне 10-3— 102 Гц со скоростью 2-5 км/с. По глубине гипоцентров (фокусов) землетрясения подразделяются на три группы: 1) мелкофокусные 0-60 км; 2) среднефокусные 60—150 км; 3) глубокофокусные 150—700 км. Но чаще всего гипоцентры землетрясений сосредоточены в верхней части земной коры на глубинах 10-30 км, где кора характеризуется наибольшей жесткостью и хрупкостью. Скорость продольных волн: где ц — модуль сдвига; р — плотность среды, в которой распространяется волна; К — модуль всестороннего сжатия. Скорость поперечных волн: так как модуль сдвига ц в жидкости и газе равен 0, поперечные волны не проходят через жидкости и газы. Поверхностные волны распространяются медленнее, чем объемные, и довольно быстро затухают как на поверхности, так и на глубине. ВолныР, достигая поверхности Земли, могут передаваться в атмосферу в виде звуковых волн на частотах более 15 Гц. Этим объясняется страшный гул, иногда слышимый людьми во время землетрясений. Сейсмические волны, вызываемые землетрясениями, можно зарегистрировать, используя сейсмографы — приборы, в основе которых лежат маятники, сохраняющие свое положение при колебаниях подставки, на которой они расположены. Первые сейсмографы появились 100 лет назад. Интенсивность, или сила землетрясений, характеризуется как е баллах (мера разрушений), так и понятием магнитуда (высвобожденная энергия). В России используется 12-балльная шкала интенсивности землетрясений MSK-64, составленная С.В. Медведевым В. Шпонхойером и В. Карником. Согласно этой шкале принята следующая градация интенсивности, или силы землетрясений: 1-3 балла — слабые; 4-5 — ощутимые; 6-7 — сильные (разрушаются ветхие постройки); 8 — разрушительное (частично разрушаются прочные здания, заводские трубы); 9 — опустошительное (разрушается большинство зданий); 10— уничтожающее (разрушаются почти все здания, мосты, возникают обвалы и оползни); 11- катастрофические (разрушаются все постройки, происходит изменение ландшафта); 12 — губительные катастрофы (полное разрушение, изменение рельефа местности на обширной площади).

Билет №43. Землетрясения. Типы сейсмических волн. Сейсмографы. Определение местоположения эпицентра и характера смещения, вызвавшего землетрясение. Оценка силы землетрясений. Цунами. Прогноз землетрясений и антисейсмические меры при строительстве.

Механизм возникновения землетрясения и его параметры. Землетрясение тектонического типа, т.е. связанное с внутренними эндогенными силами Земли, представляет собой процесс растрескивания, идущий с некоторой конечной скоростью, а не мгновенно. Он предполагает образование и обновление множества разномасштабных разрывов, со вспарыванием каждого из них не только с высвобождением, но и перераспределением энергии в некотором объеме. Когда мы говорим о том, что сила внешнего воздействия на горные породы превысила их прочность, то следует иметь в виду, что в геомеханике четко различают прочность горных пород как материала, которая относительно высока, и прочность породного массива, включающего помимо материала горных пород еще и структурные ослабленные зоны. Благодаря последним прочность породного массива существенно ниже, чем прочность собственно пород. Скорость распространения разрывов составляет несколько километров в секунду, и этот процесс разрушения охватывает некоторый объем пород, называемый очагом землетрясения. Гипоцентр — центр очага, условно-точечный источник короткопериодных колебаний. В большинстве случаев, хотя и не всегда, разрывы имеют сдвиговую природу, и очаг землетрясения охватывает определенный объем вокруг него. Сейсмология изучает упругие волны, распространяющиеся динамически в частотном диапазоне 10-3— 102 Гц со скоростью 2-5 км/с. Проекция гипоцентра на земную поверхность называется эпицентром землетрясения. Интенсивность землетрясения эпицентра изображается линиями равной интенсивности колебаний — изосейстами. Область максимальных баллов вокруг эпицентра называется плейстосейстовой. Основному подземному сейсмическому удару — землетрясению — обычно предшествуют землетрясения или форшоки, свидетельствующие о критическом нарастании напряжений в горных породах. После главного сейсмического удара обычно наблюдаются еще сейсмические толчки, но более слабые, чем главный удар. Они называются афтершоками и свидетельствуют о процессе разряда напряжений при образовании новых разрывов в толще пород. По глубине гипоцентров (фокусов) землетрясения подразделяются на три группы: 1) мелкофокусные 0-60 км; 2) среднефокусные 60—150 км; 3) глубокофокусные 150—700 км. Но чаще всего гипоцентры землетрясений сосредоточены в верхней части земной коры на глубинах 10-30 км, где кора характеризуется наибольшей жесткостью и хрупкостью. Скорость продольных волн: где ц — модуль сдвига; р — плотность среды, в которой распространяется волна; К — модуль всестороннего сжатия. Скорость поперечных волн: так как модуль сдвига ц в жидкости и газе равен 0, поперечные волны не проходят через жидкости и газы. Поверхностные волны распространяются медленнее, чем объемные, и довольно быстро затухают как на поверхности, так и на глубине. ВолныР, достигая поверхности Земли, могут передаваться в атмосферу в виде звуковых волн на частотах более 15 Гц. Этим объясняется страшный гул, иногда слышимый людьми во время землетрясений. Сейсмические волны, вызываемые землетрясениями, можно зарегистрировать, используя сейсмографы — приборы, в основе которых лежат маятники, сохраняющие свое положение при колебаниях подставки, на которой они расположены. Первые сейсмографы появились 100 лет назад. Интенсивность, или сила землетрясений, характеризуется как е баллах (мера разрушений), так и понятием магнитуда (высвобожденная энергия). В России используется 12-балльная шкала интенсивности землетрясений MSK-64, составленная С.В. Медведевым В. Шпонхойером и В. Карником. Согласно этой шкале принята следующая градация интенсивности, или силы землетрясений: 1-3 балла — слабые; 4-5 — ощутимые; 6-7 — сильные (разрушаются ветхие постройки); 8 — разрушительное (частично разрушаются прочные здания, заводские трубы); 9 — опустошительное (разрушается большинство зданий); 10— уничтожающее (разрушаются почти все здания, мосты, возникают обвалы и оползни); 11- катастрофические (разрушаются все постройки, происходит изменение ландшафта); 12 — губительные катастрофы (полное разрушение, изменение рельефа местности на обширной площади).

Есть два главных типа: объёмные волны и поверхностные волны. Кроме описанных ниже есть и другие, менее значимые типы волн, которые вряд ли можно встретить на Земле, но они имеют важное значение в астросейсмологии.

Объёмные волны

Они проходят через недра Земли. Путь волн преломляется различной плотностью и жёсткостью подземных пород. Поверхностные волны

Поверхностные волны несколько похожи на волны воды, но в отличие от них они путешествуют по земной поверхности. Их обычная скорость значительно ниже скорости волн тела. Из-за своей низкой частоты, времени действия и большой амплитуды они являются самыми разрушительными изо всех типов сейсмических волн. Они бывают двух типов: волны Рэлея и волны Лява. Цуна́ми (яп. 津波 IPA: [t͡sɯnä́mí] где 津 — «порт, залив», 波 — «волна») — длинные волны, порождаемые мощным воздействием на всю толщу воды в океане или другом водоёме. Причиной большинства цунами являются подводныеземлетрясения, во время которых происходит резкое смещение (поднятие или опускание) участка морского дна. Цунами образуются при землетрясении любой силы, но большой силы достигают те, которые возникают из-за сильных землетрясений (с магнитудой более 7). В результате землетрясения распространяется несколько волн. Более 80 % цунами возникают на периферии Тихого океана.

Тема «МАГМАТИЗМ»

Билет №44. Состав и происхождение силикатных магм. Условия плавления и кристаллизации. Реакционный ряд Боуэна. Магматическая дифференциация. Происхождение порфировых структур. Формы интрузивных тел. Полезные ископаемые, связанные с интрузивными породами.

Магма (От греч. "магма" - "густая мазь") смесь магматического расплава, кристаллов и/или их сростков и флюидной фазы, способная к перемещению в земной коре. Магма, изливающаяся на поверхность Земли, теряет растворенные летучие компоненты и превращается в лаву, которая застывая формирует эффузивные горные породы. При застывании магмы на глубине образуются интрузивные горные породы, которые образуют разнообразные по форме и размерам интрузивные тела — от мелких даек, представляющих собой выполненные магмой трещины, до огромных массивов, площадью во многие тысячи км2. Наиболее распространены в земных условиях силикатные магмы. Силикатные магмы состоят из соединений кислорода, Si, Al, Fe, Mg, Ca, Na,К, Ti, P и других элементов.

Магма имеют различные физические свойства, которые зависят от их состава, температуры и содержания летучих компонентов. Температуры большинства магм в земной коре лежат в пределах 600-1300°С. Самые низкие температуры зафиксированы для натрокарбонатитовой магмы (~450°С), самые высокие – для коматиитовых и меймечитовых магм (1600-1650°С). Вязкость магматических расплавов варьирует от 1 до 108 Па*с. Наименьшей вязкостью обладают высокотемпературные магмы ультраосновного и основного составов, наибольшая вязкость характерна для риолитовых магм. Магма стремится подняться к поверхности вследствие своей подвижности и меньшей по сравнению с вмещающими породами плотностью. При подъеме она может накапливаться на различной глубине, формируя магматические очаги. ряд реакционный (Боуэна)

- эмпирически установленная Боуэном последовательность кристаллизации минералов из магмы в виде двух реакционных рядов:

1. прерывистого ряда фемических минералов: оливин -> ромбический пироксен -> моноклинный пироксен -> амфибол -> биотит;

2. непрерывного ряда салических минералов: основной плагиоклаз -> средний плагиоклаз -> кислый плагиоклаз -> калиевый полевой шпат. Совместная кристаллизация минералов двух рядов протекает с образованием эвтектики и в этом случае последовательность выделения зависит от состава расплава. Предложенные Боуэном реакционные ряды кристаллизации минералов могут нарушаться в зависимости от состава расплава, от температуры, давления и других условий. Выделяют два типа дифференциации: собственно магматическую дифференциацию, т. е. дифференциацию вещества в жидком состоянии, и кристаллизационную дифференциацию, т. е. дифференциацию, связанную с образованием кристаллов. Магматическая дифференциация происходит раньше кристаллизационной. В магматической дифференциации выделяются процессы ликвации и ассимиляции. 

Предполагается, что не менее 90 % объема возникающего магматического расплава останавливается и застывает в толще литосферы, образуя интрузивные тела различной формы и объема. По соотношению с условиями залегания вмещающих пород интрузивы подразделяются на конкордантные (залегающие согласно, т. е. контуры их совпадают с контурами вмещающих пород) и дискордантные (залегающие несогласно, т. е. произвольно рассекающие собою слои вмещающих пород). В зависимости от глубины образования все интрузивы делятся на абиссальные (сверхглубинные) и гипабиссальные (приповерхностные). Отличительным структурным признаком всех интрузивных пород является полнокристалличность, а характерной текстурой – массивная. Абиссальные интрузивы характеризуются большими объемами и тесной связью с магматическим очагом. Благодаря длительному (миллионы лет) остыванию магмы в условиях высочайших температуры и давления, происходит полная кристаллизация вещества. В силу этого, абиссальным породам свойственны структуры полнокристаллическая, обычно крупно- или среднекристаллическая. В составе абиссальных пород чаще всего встречаются граниты, а также диориты, габбро, пироксениты и перидотиты. По условиям залегания все абиссальные тела являются дискордантными. Главными типами их являются батолиты и штоки. Батолиты являются крупнейшими интрузивными образованиями: площадь их поверхности превышает 100 кв. км, время остывания достигает десятков и сотен миллионов лет. Имеют в плане изометричную форму. В вертикальном разрезе могут как расширяться вверх, так и сужаться, образуя вверху купол или свод. Обычно батолиты сложены кислыми породами (гранитами). Крупнейшая из известных система батолитов, общей длиной около 8 000 км, представлена в Андах. Три входящих в ее состав батолита, расположенные на территории Перу и Чили, имеют протяженность по 1 300 км каждый. Батолит Берегового хребта на северо-западе США простирается на 2 000 км при ширине до 200 км. Штоки подобны батолитам, но площадь их менее 100 кв. км. Гипабиссальные интрузивы, по сравнению с абиссальными, характеризуются более тесной связью своего вещественного состава с составом вмещающих пород. Объяснить это можно, в первую очередь, несравнимо меньшим объемом приповерхностных магматических образований. Благодаря сравнительно невысоким температурам и давлению, остывание гипабиссальных тел идет гораздо быстрее, поэтому почти все или все кристаллы не достигают большого размера. Соответственно, характерными структурами являются полнокристаллическая, но мелкокристаллическая или порфировидная, что находит свое отражение в названиях гипабиссальных пород: гранит-порфир, сиенит-порфир, диорит-порфир. В этих же условиях образуются пегматиты, обладающие своеобразной пегматитовой текстурой, обусловленной разнонаправленным ростом кристаллов ортоклаза, слюд, кварца. По соотношению со вмещающими породами гипабиссальные тела бывают как дискордантными, так и конкордантными. 1. Конкордантные тела. При внедрении в слои вмещающих пород магма приспосабливается к условиям залегания последних. Лакколиты в вертикальном разрезе имеют грибообразную форму, обусловленную тем, что магма приподнимает вышележащие слои осадочных пород. Поэтому верхняя часть лакколита куполообразна, а нижняя ровная, параллельная слоям осадочных пород. Если нижняя часть имеет вид воронки, то возникшую форму называют магматическим диапиром. Диаметр лакколитов достигает нескольких километров. Лополиты являются чашеобразными телами, возникающими при заполнении магмой ядра синклинальной складки. Диаметр некоторых лополитов составляет более 100 000 кв. км (Бушвелдский лополит в ЮАР). Факолиты также возникают при заполнении магмой ослабленных сводов синклинальных или антиклинальных складок. При этом образуются тела в форме линз, соответственно вогнутых или выпуклых. Силлы (магматические залежи) формируются при заполнении магмой горизонтальных или наклонных пластов, часто образуют многоярусные серии. В составе силл преобладают породы основного, реже среднего химического состава. 2. Дискордантные тела прорывают собою слои вмещающих пород. Дайки возникают при заполнении магмой узких трещин в земной коре, что ведет к образованию вертикальных или наклонных плит, длина которых многократно превосходит толщину. Часто дайки образуют системы в виде параллельных или радиально расходящихся от общего центра плит. Толщина даек варьирует от нескольких миллиметров до десятков и сотен метров, а протяженность иногда составляет несколько сот километров (Великая дайка Зимбабве). Химический состав слагающих дайки магматических пород бывает различным. Жилы подобны по форме дайкам, но стенки их волнистые. Жилы часто ветвятся, переплетаются друг с другом. Как дайки, так и жилы обычно отходят от более крупного интрузива, часто они играют роль связующих каналов между магматическим очагом и другими интрузивными телами. Некки представлены трубообразными интрузивами в вулканических областях. Являются подводящими каналами от магматического очага к жерлу вулкана.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]