Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_3-14.docx
Скачиваний:
8
Добавлен:
01.03.2025
Размер:
262.56 Кб
Скачать

Вопрос 5 поля соленоида и тороида

Соленоид – цилиндрическая катушка, состоящая из большого числа витков, равномерно намотанных на сердечник. Тороид можно рассматривать как длинный соленоид, свернутый в кольцо (рис. 4.1).

Рис. 4.1. Магнитное поле соленоида

 Длина соленоида l содержит N витков и по нему протекает ток I. Считаем соленоид бесконечно длинным. Эксперимент показал, что внутри соленоида поле однородно, а вне соленоида не однородно и очень слабое (можно считать, равным нулю).

Циркуляция вектора В по замкнутому контуру, совпадающему с одной из линий магнитной индукции, охватывающему все N витков, согласно (4.12) равна:

  . (4.14)

 Интеграл можно представить в виде суммы двух интегралов: по внутренней части контура: и по внешней: , тогда из (4.14) получим:

  , (4.15)

  или , (4.16)

 где В – индукция магнитного поля внутри соленоида; – число витков на единицу длины соленоида.

Магнитное поле внутри тороида, так же, как в соленоиде, однородно, сосредоточено внутри; вне тороида магнитное поле, создаваемое круговыми токами тороида, равно нулю. Величина магнитного поля в тороиде определяется выражением (4.16), причем длина тороида l берется по средней длине тороида (среднему диаметру).

Отметим любопытный факт. Во всех учебниках по физике остался не отмеченным факт существования у соленоида и тороида второго магнитного поля, которое появляется из-за того, что, например, в соленоиде по отношению к средней линии соленоида витки направлены не точно перпендикулярно, а под углом меньше 90°. Это приводит к появлению тока (эффективного, но равного току I, протекающему через соленоид), вдоль соленоида (рис. 4.2).

 

Рис. 4.2. Второе магнитное поле соленоида

То есть соленоид создает дополнительное магнитное поле, такое же, как и прямолинейный бесконечно длинный проводник с током. Точно так же и для тороида: вдоль средней линии протекает эффективный ток I. У тороида второе магнитное поле эквивалентно магнитному полю витка с током (рис.4.3). Диаметр этого витка равен диаметру тороида (его средней линии), а магнитное поле тороида (R – радиус тороида).

Рис. 4.3. Второе магнитное поле тороида

Вопрос 6

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, которая равна (1) где Bn=Вcosα - проекция вектора В на направление нормали к площадке dS (α — угол между векторами n и В), dS=dSn — вектор, у которого модуль равен dS, а направление его совпадает с направлением нормали n к площадке. Поток вектора В может быть как положительным, так и отрицательным в зависимости от знака cosα (задается выбором положительного направления нормали n). Поток вектора В обычно связывают с контуром, по которому течет ток. В этом случае положительное направление нормали к контуру нами задавалось: оно связывается с током правилом правого винта. Значит, магнитный поток, который создается контуром, через поверхность, ограниченную им самим, всегда положителен. Поток вектора магнитной индукции ФB через произвольную заданную поверхность S равен (2) Для однородного поля и плоской поверхности, которая расположена перпендикулярно вектору В, Bn=B=const и Из этой формулы задается единица магнитного потока вебер (Вб): 1 Вб — магнитный поток, который проходит сквозь плоскую поверхность площадью 1 м2, который расположен перпендикулярно однородному магнитному полю и индукция которого равна 1 Тл (1 Вб=1 Тл•м2). Теорема Гаусса для поля В: поток вектора магнитной индукции сквозь любую замкнутую поверхность равен нулю: (3) Эта теорема является отражением факта, что магнитные заряды отсутствуют, вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми. Следовательно, для потоков векторов В и Е сквозь замкнутую поверхность в вихревом и потенциальном полях получаются различные формулы. В качестве примера найдем поток вектора В сквозь соленоид. Магнитная индукция однородного поля внутри соленоида с сердечником с магнитной проницаемостью μ, равна Магнитный поток сквозь один виток соленоида площадью S равен а полный магнитный поток, который сцеплен со всеми витками соленоида и называемый потокосцеплением,

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]