Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
upr_kach_shpora.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
445.44 Кб
Скачать

Системы обеспечения качества программных средств

      Непрерывный рост требований к качеству ПС стимулирует создание и активное применение международных стандартов и регламентированных технологий, автоматизирующих основные процессы их жизненного цикла, начиная с инициирования проекта. Это привело к существенному изменению в последние годы объектов, методологии и культуры в области создания и развития ПС и БД.       МС ИСО серии 9000 [2] определяют и регламентируют создание, развитие, применение и сертификацию систем качества любых предприятий, независимо от их назначения. Они содержат и развивают основное положение, что "поставщик должен разработать и поддерживать в рабочем состоянии документально оформленную систему качества как средство, обеспечивающее соответствие продукции установленным требованиям заказчика". В них зафиксировано право заказчика на инспекцию системы качества предприятия поставщика до заключения контракта на поставку продукции.       В последние годы сформировалась комплексная система управления качеством продукции TQM (Totaly Quality Management) [6], которая концептуально близка к предшествующей более общей системе на основе стандартов ИСО серии 9000. Система ориентирована на удовлетворение требований потребителя, на постоянное улучшение процессов производства или проектирования, на управление процессами со стороны руководства предприятия на основе фактического состояния проекта. Основные достижения TQM состоят в углублении и дифференциации требований потребителей по реализации процессов, их взаимодействию и обеспечению качества продукции. Системный подход поддержан рядом специализированных инструментальных средств, ориентированных на управление производством продукции. Поэтому эта система пока не находит применения в области обеспечения качества жизненного цикла программных средств.       Применение этого комплекса может служить основой для систем обеспечения качества программных средств, однако требуется корректировка, адаптация или исключение некоторых положений стандартов применительно к принципиальным особенностям технологий и характеристик этого вида продукции. Кроме того, при реализации систем качества ПС необходимо привлечение ряда стандартов, формально не относящихся к этой серии и регламентирующих показатели качества, жизненный цикл, верификацию и тестирование, испытания, документирование и другие особенности ЖЦ комплексов программ.       В России в области обеспечения жизненного цикла и качества сложных комплексов программ существует и применяется очень небольшая группа устаревших стандартов серий ГОСТ 19.ХХХ и ГОСТ 34.ХХХ. Предприятия, выполняющие государственные заказы при создании ПС для внутреннего применения, вынуждены использовать эти стандарты. Однако в экспортных заказах зарубежные клиенты требуют соответствия технологии проектирования, производства и качества продукции современным международным стандартам. Это противоречие особенно обострилось в государственных заказах Минобороны России, результаты которых одновременно используются и внутри, и вне страны.       По требованиям Минобороны России для применения международных стандартов в таких заказах их необходимо перевести на русский язык, адаптировать, юридически утвердить и издать в качестве ГОСТ Р, на что требуется несколько лет. Однако при поставках за рубеж многие стандарты допускается практически применять на языке оригинала или в виде перевода до утверждения Госстандартом России, что вполне удовлетворяет зарубежных заказчиков, но не допускается отечественными органами сертификации для продукции внутри страны.       Для разрешения этого противоречия и обеспечения прогресса в развитии и применении систем обеспечения качества программных средств необходимо принципиальное решение государственных органов (Госстандарта, МО и других) о допустимости и рекомендации временного, прямого применения стандартов ИСО в оригиналах или переводах, с постепенным переходом на соответствующие стандарты на их основе, по мере разработки и утверждения. Поэтому на практике целесообразно использовать базовые положения преимущественно международных стандартов и только некоторых компонентов ГОСТ 34.ХХХ.       К настоящему моменту ряд отечественных руководителей убедился, что для обеспечения высокого качества, надежности функционирования и безопасности применения сложных комплексов программ целесообразно выделять специалистов, ответственных за соблюдение технологии создания и развития программ, за обеспечение и контроль качества, а также за надежность и безопасность проекта ПС в целом и его компонентов. Обеспечение качества должно реализовываться специалистами в ЖЦ программных средств на основе использования современной методологии, технологического инструментария, стандартов и нормативных документов. Для систематической координированной борьбы с угрозами качеству необходимо проводить исследования конкретных факторов, влияющих на качество функционирования и безопасность применения программ со стороны, реально существующих и потенциально возможных дефектов в создаваемых комплексах программ.       Разработка и сопровождение сложных ПС на базе современных технологий позволяет предупреждать и устранять наиболее опасные системные и алгоритмические ошибки на ранних стадиях проектирования, а также использовать неоднократно проверенные в других проектах программные и информационные компоненты высокого качества. Для обнаружения и устранения ошибок проектирования все этапы разработки и сопровождения ПС должны быть поддержаны методами и средствами систематических, автоматизированных верификации, тестирования и испытаний. При разработке ПС целесообразно применять различные методы, эталоны и виды тестирования, каждый из которых ориентирован на обнаружение, локализацию или диагностику определенных типов дефектов.

      Удостоверение достигнутого качества функционирования сложных критических ПС и процессов их жизненного цикла должно базироваться на сертификатах, выданных аттестованными проблемно-ориентированными испытательными лабораториями. Сертификация систем качества предприятий - разработчиков ПС по МС ИСО серии 9000 [7] - позволяет заказчикам и покупателям выбирать из них наиболее надежных партнеров для реализации информационных систем, способных гарантировать высокое качество поставляемых и используемых комплексов программ. Применение сертифицированных систем качества предприятий не только гарантирует высокое, устойчивое качество проектирования и обеспечение жизненного цикла ПС, но позволяет во многих случаях не проводить или сокращать сертификацию конечного продукта. Базой такой сертификации предприятий, разрабатывающих программные средства, может служить комплекс стандартов, нормативных и инструктивных документов, представленных на схеме. Краткое содержание стандартов ИСО изложено в [7], а полные тексты в [2].       Необходимость анализа и развития сертификации программ как самостоятельной проблемы обусловлена специфическими стандартами (см. схему) и особенностями их жизненного цикла. К ним относятся, с одной стороны, объективная необходимость удостоверения качества и потребительских свойств продукции, активизация деятельности в этом направлении на международном уровне. С другой, отсутствие в государственных и международных стандартах количественных требований к информационным системам, широкое многообразие классов и видов программ и баз данных, обусловленное различными функциями ИС, предопределяет формальные трудности, связанные с процедурами доказательства соответствия ПС и БД условиям контрактов и требованиям потребителей. Поэтому основой сертификации должны быть детальные и эффективные методики испытаний систем качества и конкретных ПС, специально разработанные тестовые задачи и генераторы для их формирования, а также квалификация и авторитет испытателей. Для этого заказчики должны выбирать подрядчиков - исполнителей своих проектов, имеющих системы обеспечения качества программных средств для ИС и сертификаты, удостоверяющие реализацию и применение системы качества предприятием-разработчиком.       В отечественных ИС все больше применяются программные компоненты зарубежных фирм, которые также не могут быть абсолютно гарантированы от проявления дефектов проектирования, программирования и документации. Для обеспечения требуемого качества функционирования комплексов программ с использованием импортных компонентов следует закупать только лицензионно-чистые продукты, поддерживаемые гарантированным сопровождением конкретных поставщиков. Эти компоненты должны сопровождаться полной эксплуатационной и технологической документацией, сертификатом соответствия и комплектами тестов. В контрактах на закупку должны специально фиксироваться обязательства поставщиков по сопровождению и замене версий ПС при выявлении дефектов или совершенствовании функций. Все версии зарубежных ПС следует проверять на качество функционирования в конкретном окружении ИС путем повторных испытаний или отдельными проверками, подтверждающими зарубежные сертификат и эксплуатационную документацию.

Выводы

      Быстрое увеличение сложности и размеров современных комплексов программ при одновременном повышении ответственности выполняемых функций резко повысило требования со стороны пользователей к их качеству, надежности функционирования и безопасности применения. Для каждого проекта ПС, выполняющего ответственные функции, должны разрабатываться и применяться система качества, специальные планы и программа, методология и инструментальные средства, обеспечивающие требуемые качество, надежность и безопасность функционирования. Для удовлетворения высоких требований к функционированию необходимы выделение из ЖЦ ПС задач и работ по обеспечению качества программ, а также обучение и концентрация усилий разработчиков на анализе и обосновании рентабельности выбранной методологии и методов разработки комплексов программ.       Широкий спектр требований к качеству, в зависимости от назначения и области применения ПС, приводит к необходимости адаптации стандартов, регламентирующих системы качества предприятий-разработчиков. Последовательная детализация рекомендаций базовых стандартов должна доводиться до формирования должностных инструкций специалистам, образуя в совокупности иерархический комплекс нормативных документов системы качества предприятия, обеспечивающий жизненный цикл сложных программных средств.       Только скоординированное, комплексное применение в проектах ПС с начала проектирования современных методов и стандартов позволяет достигать высокого качества, необходимого для использования ПС в распределенных критических и сложных системах обработки информации. Необходимо убедить руководителей проектов, заказчиков и разработчиков в том, что тщательно регламентированное и достаточно полное системное проектирование ПС и БД на основе современных методов и международных стандартов выгодно с позиции сокращения ошибок и повышения качества сложных комплексов программ

57

2.3. НАУЧНО-ТЕХНИЧЕСКИЕ ОСНОВЫ МЕТРОЛОГИЧЕСКОГО ОБЕСПЕЧЕНИЯ

 2.3.1 ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ И ИХ ИЗМЕРЕНИЕ

2.3.2 ЕДИНИЦЫ ФИЗИЧЕСКИХ ВЕЛИЧИН

2.3.3 ЭТАЛОНЫ ЕДИНИЦ ФИЗИЧЕСКИХ ВЕЛИЧИН

2.3.4 СРЕДСТВА И МЕТОДЫ ИЗМЕРЕНИЙ

2.3.5 ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

    2.3.1 ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ И ИХ ИЗМЕРЕНИЕ

Физической величиной называется одно из свойств физического объекта (явления, процесса), которое является общим в качественном отношении для многих - физических объектов, отличаясь при этом количественным значением.

Каждая физическая величина имеет свои качественную и количественную характеристики. Качественная характеристика определяется тем, какое свойство материального объекта или какую особенность материального мира эта величина характеризует. Так, свойство "прочность" в количественном отношении характеризует такие материалы, как сталь, дерево, ткань, стекло и многие другие , в то время как количественное значение прочности для каждого из них совершенно разное. Для выражения количественного содержания свойства конкретного объекта употребляется понятие "размер физической величины". Этот размер устанавливается в процессе измерения.

Целью измерений является определение значения физической величины - некоторого числа принятых для нее единиц (например, результат измерения массы изделия составляет 2 кг, высоты здания -12 м и др.).

Существует несколько определений понятия "измерения", каждое из которых описывает какую-нибудь характерную особенность этого многогранного процесса. В соответствии с ГОСТ 16263-70 "ГСИ. Метрология. Термины и определения" измерение - это нахождение значения физической величины опытным путем с помощью специальных технических средств. Это широко распространенное определение измерения отражает его цель, а также исключает возможность использования данного понятия вне связи с физическим экспериментом и измерительной техникой. Под физическим экспериментом понимают количественное сравнение двух однородных величин, одна из которых принята за единицу, что "привязывает" измерения к размерам единиц, воспроизводимых эталонами.

Интересно отметить толкование данного термина философом П.А.Флоренским, которое вошло в "Техническую энциклопедию" издания 1931 г. "Измерение - основной познавательный процесс науки и техники, посредством которого неизвестная величина количественно сравнивается с другою, однородною с нею и считаемою известной".

Измерения в зависимости от способа получения числового значения измеряемой величины делятся на прямые и косвенные.

Прямые измерения - измерения, при которых искомое значение величины находят непосредственно из опытных данных. Например, измерение длины линейкой, температуры термометром и т.п.

Косвенные измерения - измерения, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. Например, площадь прямоугольника определяют по результатам измерения его сторон (s=l.d) , плотность твердого тела определяют по результатам измерений его массы и объема (р= m/v) и т.п.

Наибольшее распространение в практической деятельности получили прямые измерения, т.к. они просты и могут быть быстро выполнены. Косвенные измерения применяют тогда, когда нет возможности получить значение величины непосредственно из опытных данных (например, определение твердости твердого тела) или когда приборы для измерения величин, входящих в формулу, точнее, чем для измерения искомой величины.

Деление измерений на прямые и косвенные позволяет использовать определенные способы оценивания погрешностей их результатов.

  2.3.2 ЕДИНИЦЫ ФИЗИЧЕСКИХ ВЕЛИЧИН

Физическая величина, которой по определению присвоено числовое значение, равное единице, называется единицей физической величины.

Разные единицы одной и той же величины отличаются друг от друга своим размером. Так, размер килограмма в тысячу раз больше размера грамма, размер минуты в шестьдесят раз больше размера секунды. Единицу физической величины можно выбрать произвольно, независимо от других единиц. Например, единица длины - метр, единица массы килограмм, единица температуры - градус и т.д.

Для большинства величин единицы получают по формулам, выражающим зависимость между физическими величинами. В этом случае единицы величин будут выражаться через единицы других величин. Например, единица скорости - метр в секунду (м/с), единица плотности - килограмм на метр в квадрате (кг/м2). Единицы, образованные с помощью формул, называют производными единицами.

  2.3.3 ЭТАЛОНЫ ЕДИНИЦ ФИЗИЧЕСКИХ ВЕЛИЧИН

Одно из условий обеспечения единства измерений - выражение результата в узаконенных единицах. Это предполагает не только применение допущенных ГОСТ 8.417-81 единиц, но и обеспечение равенства их размеров. А для этого необходимо обеспечить воспроизведение, хранение единиц физических величин и передачу их размеров всем применяемым средствам измерений, проградуированных в этих единицах.

Средство измерений, предназначенное для воспроизведения и хранения единицы величины (или кратных либо дельных значений единицы величины) с целью передачи ее размера другим средствам измерений данной величины, выполненное по особой спецификации и официально утвержденное в установленном порядке, называется эталоном.

Эталон, утвержденный в качестве исходного для страны, называют государственным эталоном.

В основе создания эталонов лежат фундаментальные исследования. В эталонах воплощены новейшие достижения науки и техники для воспроизведения единиц с максимально возможной точностью. Эталонную базу страны составляет государственные эталоны (порядка 120), которые хранятся в Государственных научных метрологических центрах (ГНМЦ).

  2.3.4 СРЕДСТВА И МЕТОДЫ ИЗМЕРЕНИЙ

Средство измерений (СИ) представляет собой техническое устройство, предназначенное для измерений и имеющее нормированные метрологические характеристики-

К средствам измерений относятся: меры, измерительные приборы, измерительные преобразователи, измерительные установки и измерительные системы.

Мера - это средство измерения, предназначенное для воспроизведения физической величины заданного размера. К мерам относят гири, концевые меры длины, нормальные элементы (меры ЭДС). Меры, воспроизводящие физическую величину одного размера (например, гиря, плоскопараллельная концевая мера длины), называются однозначными. Меры, воспроизводящие ряд одноименных величин различного размера (например, линейка с миллиметровыми делениями), называются многозначными

В сферах распространения государственного метрологического контроля и надзора используемые типы средств измерений должны быть утверждены и включены в Государственный реестр средств измерений, который ведет Всероссийский научно-исследовательский институт метрологической службы (ВНИИМС). На средство измерений утвержденного типа и на эксплуатационные документы наносится знак утверждения типа установленной формы и выдается сертификат. Средства измерений при эксплуатации должны подвергаться периодической поверке органами Государственной метрологической службы или аккредитованны1ми метрологическими службами юридических лиц. На поверенное средство измерений наносится клеймо и выдается свидетельство установленной формы. Перечни средств измерений, подлежащих поверке, составляются метрологическими службами юридических лиц и направляются в органы Государственной метрологической службы. При осуществлении Государственного метрологического надзора контролируется правильность и полнота этих перечней, а также состояние и применение средств измерений.

Средства измерений, применяемые вне сферы распространения государственного метрологического контроля и надзора, калибруются метрологической службой предприятия по эталонам, соподчиненным государственным эталонам единиц величин. Метрологические службы юридических лиц могут быть аккредитованы на право проведения калибровочных работ органами Государственной метрологической службы в Российской системе калибровки (РСК). Порядок аккредитации на право выполнения калибровочных работ устанавливается Госстандартом России.

  2.3.5 ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

На процесс измерения и получение результата измерения оказывает воздействие множество факторов: характер измеряемой величины, качество применяемых средств измерений, метод измерений, условия измерения (температура, влажность, давление и т.п.), индивидуальные особенности оператора (специалиста, выполняющего измерения) и др. Под влиянием этих факторов результат измерений будет отличаться от истинного значения измеряемой величины.

Отклонение результата измерений от истинного значения измеряемой величины называют погрешностью измерения:

Это теоретическое определение погрешности, т.к. как истинное значение величины неизвестно. При метрологических работах вместо истинного значения используют действительное значение, за которое принимают обычно показание эталонов. В практической деятельности вместо истинного значения используют его оценку.

По форме числового выражения погрешности измерений подразделяют на абсолютные и относительные.

Абсолютные погрешности выражают в единицах измеряемой величины- Относительная погрешность определяется отношением абсолютной погрешности к истинному значению измеряемой величины. Например, вагон массой 50 т измерен с абсолютной погрешностью ± 50 кг, относительная погрешность составляет ± 0,1 %.

По источникам возникновения погрешности подразделяют на инструментальные (обусловлены свойствами средств измерений), методические (возникают вследствие неправильного выбора модели измеряемого свойства объекта, несовершенства принятого метода измерений, допущений и упрощений при использовании эмпирических зависимостей и др.) и субъективные (погрешности оператора). Способы оценивания погрешностей измерений в НД по метрологии приведены с учетом такой классификации.

Погрешности измерений оказывают влияние на результаты контроля и испытания образцов продукции. При контроле продукции, параметры качества которых находятся близко к границе допускаемых значений, из-за погрешности измерений часть годных изделий может быть забракована (вероятности ошибок контроля первого рода - Р1) и часть бракованных изделий может быть принята как годные (ошибки контроля второго рода - Р2). Вероятности ошибок первого и второго рода являются критериями достоверности контроля. Характеристики погрешности измерений должны выбираться при контроле образцов продукции в соответствии с требованиями достоверности контроля.

 

 

 

 

 

 

 

 

 

 

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]