
- •1.Локальные вычислительные сети
- •Топологии локальных сетей
- •Среды передачи информации
- •Методы кодирования информации
- •Методы управления обменом в сети типа «активная звезда»
- •В сети типа «шина»
- •В лвс типа «кольцо»
- •Контроль правильности передачи
- •Функции аппаратуры локальных сетей
- •Сетевые адаптеры
- •Магистральные функции
- •Сетевые функции
- •Другие сетевые устройства
- •Аппаратура лвс
- •Расчет максимальной длины сети
- •Типы лвс Ethernet
- •Аппаратура 10base 5
- •Аппаратура 10base-f
- •Создание сложных конфигураций
- •Аппаратура сети Fast Ethernet
- •Аппаратура сети Gigabit Ethernet
- •Аппаратура сети Token Ring фирмы ibm
- •Аппаратура сети Arcnet
- •Аппаратура сети fddi
- •Аппаратура сети 100vg-AnyLan
- •2.Эталонная модель взаимодействия открытых систем
- •Уровни эталонной модели
- •Функции уровней
- •Правила описания сервиса
- •3.Верхние уровни модели osi
- •Прикладной уровень
- •Уровень представления
- •Сеансовый уровень osi
- •Фазы и услуги сеансового сервиса
- •Функциональные группы и сервисные подмножества
- •Транспортный уровень osi
- •Услуги транспортного уровня
- •Установление соединения
- •Разъединение
- •Классы транспортного протокола
- •Процедуры протокола
- •Нумерация блоков данных
- •Явное управление потоком
- •Формат бдтп
- •4.Структура системы передачи данных
- •Сетевой уровень osi
- •Протоколы сетевого уровня
- •Зависимые от подсетей протоколы конвергенции (пр2)
- •Независимые от подсетей протоколы конвергенции
- •Рекомендация х.25 мкктт
- •Особенности пакетного уровня (х.25/3)
- •Управление потоком
- •Процедуры протокола х.25/3
- •Уровень управления информационным каналом
- •Протокол bsc
- •Типы станций hdlc
- •Режимы работы
- •Процедуры обмена
- •Назначение бита p/f
- •Установление соединения
- •Разъединение соединения
- •Восстановление посредством rej
- •5.Высокоскоростные глобальные сети Каналы t1/e1
- •Сети isdn
- •Имеются две стандартные для isdn конфигурации каналов: bri и pri/
- •Сети Frame Relay
- •Сети atm
- •6.Сеть Интернет
- •Определение Интернет
- •Управление Интернет
- •Оплата Интернет
- •Адресация в Интернет
- •Стек протоколов tcp/ip
- •Протокол ip
- •Протокол iPv6
- •Протокол tcp
- •Механизм тайм-аута ожидания подтверждения
- •Формат заголовка
- •Процедура передачи данных
- •Завершение соединения
- •Протокол udp
- •Протокол icmp
- •7.Маршрутизация
- •8.Удаленный доступ к сети
- •Работа модемов в рамках семиуровневой модели osi
- •Классификация модемов
- •Устройство современного модема
- •Режимы работы модема
- •Протоколы модуляции
- •Основные протоколы модуляции
Сети atm
Сети ATM (Asynchronous Transfer Mode) были разработаны в качестве еще одной альтернативы сетям Х.25. Скорость передачи в этой сети находятся в диапазоне от 25,5 Мбит/с до 2,488 Гбит/с. В качестве среды передачи могут использоваться различные носители, начиная с неэкранированной витой пары UTP класса 3, вплоть до оптоволоконных каналов.
Эта технология известна также под названием Fast Packet Switching – быстрая коммутация пакетов.
Высокие скорости передачи обеспечиваются за счет:
Фиксированного размера кадра — 53 байта
Отсутствия каких-либо мер по обеспечению правильности передачи. Эта задача переносится на более высокие протокольные уровни (транспортный).
Технология ATM относится по концепции OSI ко второму (канальному) уровню. Кадры в ATM называются ячейками (cell). Формат такой ячейки показан на рисунке 5.7.
Р
ис.5.7.
Заголовок ячейки (5 байт) содержит:
идентификатор виртуального пути – VPI (Virtual Path Identifier);
идентификатор виртуального канала – VCI (Virtual Channel Identifier);
идентификатор типа данных (3 бита);
поле приоритета потери ячейки (1 бит);
поле контроля ошибок в заголовке (8 бит) – это сумма по mod 2 байтов заголовка.
Протоколы более высокого уровня разрезают свои сообщения на сегменты по 48 байт и помещают их в поле информации ячейки.
Технология ATM поддерживает 2 типа каналов (аналогично сетям Frame Relay):
PVC — постоянные виртуальные каналы;
SVC— коммутируемые виртуальные каналы.
На канальном уровне ATM выделяются 2 подуровня (см. рис.5.8.): непосредственно уровень ATM и уровень адаптации ATM.
Уровень адаптации ATM (ATM Adaptation Layer) – AAL – реализует один из пяти режимов передачи:
Рис.5.8.
AAL1 — характеризуется постоянной скоростью передачи (Constant Bit Rate – CBR) и синхронным трафиком. Ориентирован на передачу речи и видеоизображений.
AAL2 — тоже поддерживает синхронную передачу, но использует переменную битовую скорость (Variable Bit Rate – VBR). Он пока, к сожалению, еще не реализован.
AAL3/AAL4 (объединены в единый протокол) — ориентированы на переменную битовую скорость (VBR). Синхронизация не обеспечивается. AAL4 отличается тем, что не требует предварительного установления соединения.
AAL5 — аналогичен AAL3, только содержит меньший объем служебной информации.
По протоколам AAL1 и AAL2 передаются порции по 48 байт информации (1 байт – служебный).
Протоколы AAL3 – AAL5 предполагают передачу блоков (разрезанных на сегменты) размером до 65536 байт.
6.Сеть Интернет
Возникновение сети относят к 1969 году, когда вступил в строй опытный участок сети ARPAnet (Advanced Research Projects Agency net) – сеть управления перспективных исследований Министерства обороны США).
ARPA была экспериментальной сетью с пакетной коммутацией, на базе которой отрабатывались принципы построения особонадежных сетей, устойчивых к отказам (например, к бомбовым ударам). Сама идеология этой сети предполагала, что она ненадежна – любой ее участок может исчезнуть в любой момент (после ядерного удара). В результате экспериментов и эксплуатации сети была разработана архитектура протоколов министерства обороны США — DARPA. В соответствии с этими протоколами была создана объединенная сеть передачи данных Министерства обороны США - DDN (Defence Data Network). За первые 10 лет своего развития (70-е годы) ARPAnet превратилась в мощную территориально-распределенную сеть, насчитывающую десятки узлов коммутации и более сотни ГВМ.
С середины 70-х годов ARPAnet стала развиваться также в направлении подключения к ней многочисленных компьютерных сетей различной физической природы, работающих как по принципам, аналогичным сети ARPAnet, так и по отличающимся. Это были, например, экспериментальная широкополосная сеть WBNET, сеть TELENET, кольцевые и моноканальные ЛВС, пакетная сеть с подвижными ГВМ и т.д. Такое объединение различных подсетей в единую сеть получило название ARPA – Internet, а в дальнейшем просто Internet. Это объединение базируется на едином межсетевом протоколе IP и едином транспортном протоколе TCP.
Протоколы сети ARPAnet стали использоваться и в других сетях. Наиболее важной из новых сетей была сеть NSFNET – сеть национального научного фонда (NSF) правительства США. В конце 80-х годов NSF создал 5 суперкомпьютерных центров в ведущих университетах США. Эти центры были соединены в сеть (на базе IP-технологии) каналами со скоростью 56 Кбит/с. Эта сеть начала интенсивно использоваться в 1987 году, но скоро перестала справляться с нагрузкой. Была проведена модернизация оборудования и скорость передачи увеличилась в 20 раз. Далее к этой сети стали подключаться средние и начальные школы США, местные библиотеки, колледжи и т.д. К этой сети была подключена и часть (открытая) сети ARPAnet. Другая часть (DDN) стала сетью министерства обороны США.
Развитие сети привело к созданию множества "шлюзов", с помощью которых к сети могли подключаться сети, построенные на другой идеологии (SNA, DECnet, X.25, BITNET и др.). Сначала эти шлюзы применялись только для пересылки электронной почты, а затем стали обеспечивать и другие услуги.