
- •32. Теорема Гауса для диэлектрического поля в диелектрике. Вектор Электрического смещения.
- •34. Спонтанная поляризация кристалических диэлектриков. Сегнетоэлектрики. Пироэлектрики. Пьезоэлектрики.
- •35. Свойства сегнетоэлектриков. Точка Кюри. Диэлектрический гистерезис.
- •36. Электростатическое поле внутри заряженного проводника и вблизи его поверхности. Проводники во внешнем электростатическом поле. Электроёмкость уединённого проводника.
- •37. Конденсаторы. Типы конденсаторов. Соединения конденсаторов. Ёмкость плоского конденсатора.
- •38. Энергия заряженных проводника и конденсатора. Энергия электрического поля. Объемная плотность энергии.
- •39. Электрический ток проводимости в металлах, его характеристики и условия существования. Сторонние силы. Электродвижущая сила и напряжение.
- •41. Работа и мощность тока. Закон Джоуля-Ленца в интегральной и дифференциальной формах.
- •42. Основы классической электронной теории электропроводности металлов. Удельная электропроводность. Подвижность носителей тока.
- •43. Закон Джоуля-Ленца, закон Виемана-Франца, закон Ома на основе классической теории электропроводимости.
- •44. Электрический ток в жидкостях и газах. Законы Фарадея для электролиза. Ионизация молекул газов. Электрический ток в газах. Газовые разряды. Электропроводность газов. Плазма.
- •45. Электрический ток в вакууме. Работа выхода электронов из металла. Контактная разность потенциалов. Термоэлектродвижущая сила. Эффекты Пельтье и Томсона.
- •46. Электрический ток в вакууме. Электронная эмиссия. Виды эмиссий и их применение. Формула Богуславского-Ленгмюра, формула Ричардсона. Вольтамперная характеристика вакуумного диода.
39. Электрический ток проводимости в металлах, его характеристики и условия существования. Сторонние силы. Электродвижущая сила и напряжение.
Классическая теория электропроводности металлов
Носителями тока в металлах являются свободные электроны, т. е. электроны, слабо связанные с ионами кристаллической решетки металла. Опыт Рикке (1901), в котором в течение электрический ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндра (Сu, Аl, Сu) одинакового радиуса. Несмотря на то что общий заряд, прошедший через эти цилиндры, достигал огромного значения (=3,5 • 106 Кл), никаких, даже микроскопических, следов переноса вещества не обнаружилось. Это явилось экспериментальным доказательством того, что ионы в металлах не участвуют в переносе электричества, а перенос заряда в металлах осуществляется частицами, которые являются общими для всех металлов. Такими частицами могли быть открытые в 1897 г. английским физиком Д. Томе (1856—1940) электроны. Для доказательства этого предположения необходимо было определить отношение заряда носителя к его массе. Идея подобных опытов заключалась в следующем: если в металле имеются подвижные, слабо связанные с решеткой носители тока, то при резком торможении проводника эти частицы должны по инерции смещаться вперед, как смещаются вперед пассажиры, стоящие в вагоне при его торможении. Результатом смещения зарядов должен быть импульс тока; по направлению тока можно определить знак носителей тока, а размеры и сопротивление проводника, можно вычислить удельный заряд носителей. Таким образом, было окончательно доказано, что носителями электрического тока в металлах являются свободные электроны. Существование свободных электронов в металлах можно объяснить следующим образом: при образовании кристаллической решетки металла (в результате сближения изолированных атомов) валентные электроны, сравнительно слабо связанные с атомными ядрами, отрываются от атомов металла, становятся «свободными» и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электроны, образуя своеобразный электронный газ, обладающий, согласно электронной теории металлов, свойствами идеального газа.
Сторонние силы. Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение носителей (они предполагаются положительными) от точек с большим потенциалом к точкам с меньшим потенциалом. Это приведет к выравниванию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способного создавать и поддерживать разность потенциалов за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками тока. Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называются сторонними.
Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.
ЭДС
можно выразить через напряжённость
электрического поля сторонних
сил (
).
В замкнутом контуре (
)
тогда ЭДС будет равна:
,
где
—
элемент длины контура. ЭДС так же, как
и напряжение,
измеряется в вольтах
НАПРЯЖЕНИЕ. Разность потенциалов, затрачиваемая на преодоление сопротивления не всей цепи, Черта какой-либо её части, называют напряжением электричества между данными точками цепи.