Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_po_matanu_1_kurs.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
784.9 Кб
Скачать

10. Дискретная св и ее закон распределения.

Величина, принимающая в результате испытания (опыта) определенное значение, называется случайной величиной. СВ Х называется дискретной, если существует конечное и счетное множество S=х1, х2,… такое, что Р(ХS)=1. Числа х1, х2,…называются возможными значениями СВ Х.

П усть рi=Р(Х=хi) – вероятность возможного i-го значения. При хi ≠ хj события Х=хi и Х= хj несовместны. Применяя правило сложения вероятностей для несовместных событий получим:

Таблица

Х

х1

х2

Р

р1

р2

называется законом распределения дискретной СВ Х. Для любой СВ функция распределения – F(x)=P(X<x) . В случае дискретной СВ функция распределения имеет вид

F(x) – ступенчатая функция со скачками в х1, х2,…, причем величины скачков равны р1, р2,…

11. Числовые хар-ки сдв.

Математическим ожиданием дискретной СВ Х, множество возможных значений которой конечно, называется сумма произведений всех ее возможных значений на их вероятности: М(Х)=х1р12р2+…+хnpn

Свойства. 1.Матем. ожидание константы равно константе: М(С)=С

2.Постоянный множитель можно выносить за знак математического ожидания: М(СХ)=СМ(Х)

3.Математическое ожидание суммы СВ равно сумме мат. ожиданий слагаемых:

М(Х1+Х2+…+Хn)=M(X1)+M(X2)+…+M(Xn)

4.Математическое ожидание произведений независимых СВ равно произведению математических ожиданий сомножителей. (дискр.СВ наз. независимыми, если Р(Х11,…Хn=an)=P(X1=a1)*…Р(Xn=an).

Для любой СВ Х разность Х-М(Х) называется отклонением Х. Математическое ожидание квадрата отклонения СВ Х называется дисперсией Х. По определению D(X)=M(X-M(X))2.

Стандартное отклонение СВ Х определяется как корень квадратный из дисперсии и обозначается (х). Из свойств математического ожидания: D(X)=M(X2)-M(X)2

Свойства. 1.Прибавление (вычитание) константы к СВ не меняет ее дисперсии D(X+C)=D(X)

2.Постоянный множитель выносится из-под знака дисперсии в квадрате D(СX)=С2D(X)

3.Дисперсия суммы независимых СВ равна сумме дисперсий слагаемых D(X1+…+Xn)=D(X1)+…+ D(Xn)

Важно помнить, что дисперсия константы равна 0: D(C)=0

Начальным моментом порядка К СВ Х называют математическое ожидание величины Хк : к=М(Хк)

Центральным моментом порядка к случайной величины Х называют математическое ожидание величины (Х-М(Х)) к

к=М[(X-M(X)) к]

Cоотношение, связывающее начальные и центральные моменты: 2=2-12

При изучении распределений, отличных от нормального, возникает необходимость количественно оценить это различие. С этой целью вводят специальные характеристики – асимметрию и эксцесс (для нормального распределения эти характеристики равны 0). Асимметрией теоретического распределения (теоретическим называют распределение вероятностей) называют отношение центрального момента третьего порядка к кубу среднего квадратического отклонения: Аs=3\3

Эксцессом теоретического распределения называют характеристику, которая определяется следующим равенством: Ек=(4\4)-3

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]