
- •Тема 1: Общая теория статистики как наука
- •Предмет статистики
- •Важнейшие категории статистики
- •Классификация признаков, характеризующих единицу статистической совокупности
- •Метод статистики
- •Статистическое наблюдение
- •Тема 2: Статистическое наблюдение
- •План статистического наблюдения
- •Программно-методологическая часть
- •Организационная часть
- •Ошибки наблюдения
- •Контроль данных наблюдения
- •Формы, виды и способы наблюдения Формы наблюдения
- •Виды статистического наблюдения
- •Тема 3: Метод группировок
- •Виды статистических группировок
- •Характеристика зависимости количества комментариев от
- •Тема 4: Статистическое представление информации
- •Статистические таблицы
- •Виды статистических таблиц
- •Основные требования, предъявляемые при составлении и оформлении таблиц
- •Статистические графики
- •Виды статистических графиков
- •Статистические графики
- •Статистические карты
- •Тема 5: Абсолютные и относительные величины
- •Абсолютные величины
- •Относительные величины
- •Виды относительных величин
- •Тема 6: Средние величины
- •Общая и групповые средние
- •Виды средних величин
- •Правило мажоритарности средних
- •Тема 7. Изучение вариации Показатели анализа вариационного ряда распределения
- •Оценка существенности асимметрии
- •Эксцесс распределения
- •Оценка существенности эксцесса
- •Тема 8. Нормальное распределение
- •Свойства нормального распределения
- •Косвенные расчеты показателей вариации
- •Критерий согласия к.Пирсона
- •Критерий согласия в. И. Романовского
- •Критерий согласия б.С.Ястремского
- •Критерий согласия а.Н.Колмогорова
- •Тема 9. Выборочный метод
- •7) Многоступенчатая;
- •Средняя и предельная ошибки выборки
- •Формулы численности случайной выборки при определении доли изучаемого признака
- •Малая выборка
- •Тема 10. Дисперсионный анализ
- •Принципиальная схема дисперсионного анализа
- •Тема 11. Статистическое изучение корреляционных взаимосвязей
- •Связь изучается между вариацией результативного и факторного признаков, а не между их отдельными величинами
- •Коэффициенты Фехнера и Спирмэна
- •Эмпирическое и теоретическое корреляционное отношение
- •Оценка тесноты связи нелинейной зависимости
- •Множественная корреляция
- •Тема 12. Анализ рядов динамики
- •Тема 13. Индексный метод
- •Формулы индексов
- •Г рафик Варзара
Относительные величины
Относительная величина– это обобщающий показатель, который дает числовую меру соотношения двух сопоставляемых абсолютных величин. Так как многие абсолютные величины взаимосвязаны, то и относительные величины одного типа в ряде случаев могут определяться через относительные величины другого типа.
Основное условие правильного расчета относительной величины – сопоставимость сравниваемых показателей и наличие реальных связей между изучаемыми явлениями. Необходимо добиваться как можно большего соответствия по смыслу сравниваемых показателей.
Например, мы хотим построить относительный показатель, характеризующий степень грамотности населения. Можно разделить число грамотных на общую численность населения, но это не лучший из показателей. Ведь дети до б лет, некоторые категории инвалидов с детства, душевнобольных не могут наравне со здоровыми и достигшими школьного возраста людьми быть обучены грамоте. Эти категории лиц правильнее исключить из всего населения при построении относительного показателя грамотности
Второе условие. При построении относительного статистического показателя сравниваемые величины могут различаться только одним атрибутом: или видом признака (при
одинаковом объекте, периоде времени, плановом или фактическом характере показателей), или временем (при том же признаке, объекте и т.п.), или только фактическим, плановым или нормативным характером показателей (тот же объект, признак, время) и т.д. Нельзя сопоставлять показатели, различные по двум и более атрибутам.
Например, нельзя сравнивать добычу угля в США в 2000 г. с выплавкой стали в Российской
Федерации в 2002 г.
Величина, с которой производится сравнение, называется основанием, или базой сравнения
Относительная величина показывает, во сколько раз сравниваемая величина больше или меньше базисной или какую долю первая составляет по отношению ко второй. В ряде случаев относительная величина показывает, сколько единиц одной величины приходится на единицу другой.
В результате сопоставления одноименных абсолютных величин получают неименованные относительные величины. Они могут выражаться в виде долей, кратных соотношений, процентных соотношений, в виде промилле и т.д.
Результатом сопоставления разноименных величин являются именованные относительные величины. Их название образуется сочетанием сравниваемой и базисной абсолютных величин.
В зависимости от базы сравнения могут иметь различную форму выражения:
в коэффициентах, если основание принимается за единицу;
процентах, если основание принимается за 100 (%);
промилле, если основание принимается за 1000 (%о);
продецимилле, если - за 10 000 (%оо);
просантимилле, если - за 100 000 (%ооо).
Выбор той или иной формы относительной величины зависит от ее значения. Если сравниваются одноименные величины, то результат выражается в коэффициентах, в процентах или промилле и т.д.
Например, коэффициенты рождаемости или смертности, исчисляемые в промилле (‰), показывают число родившихся или умерших за год в расчете на 1 000 человек среднегодовой численности; относительная величина эффективности использования рабочего времени – это количество продукции в расчете на один отработанный человеко-час и т.д.