
- •Автокорреляция случайного возмущения. Причины. Последствия.
- •Автокорреляция уровней временного ряда и ее последствия.
- •Автокорреляция. Методы устранения автокорреляции.
- •Алгоритм проверки адекватности парной регрессионной модели.
- •Алгоритм проверки значимости регрессора в парной регрессионной модели.
- •Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений.
- •Выбор типа математической функции при построении уравнения регрессии
- •Выведите формулы вычисления параметров модели парной регрессии
- •Гетероскедастичность - понятие, проявление и меры устранения
- •Гетероск-сть случайного возмущения. Причины. Последствия. Тест gq.
- •Двухшаговый метод наименьших квадратов для оценки параметров структурной формы модели
- •Индивидуальная и интервальная оценка индивидуального значения зависимой переменной
- •Интервальная оценка параметров уравнения парной регрессии
- •Классическая парная регрессионная модель. Спецификация модели. Теорема Гаусса – Маркова.
- •Ковариация, коэффициент корреляции и индекс детерминации
- •Количественные характеристики взаимосвязи пары случайных переменных.
- •Косвенный метод наименьших квадратов для оценки параметров структурной формы модели
- •Линейная модель множественной регрессии.
- •Метод Монте-Карло, его применение в эконометрике
- •Метод наименьших квадратов: алгоритм метода; условия применения. Обобщённый метод наименьших квадратов
- •Модели с бинарными фиктивными переменными.
- •Мультиколлинеарность факторов – понятие, проявление и меры устранения.
- •Методы устранения мультиколлинеарности
- •Назначение теста Голдфелда-Квандта, этапы его проведения
- •Нелинейная модель множественной регрессии Кобба-Дугласа. Оценка её коэффициентов.
- •Нелинейная регрессия (линеаризация, оценка параметров)
- •Ожидаемое значение случайной переменной, её дисперсия и среднее квадратическое отклонение.
- •Основные числовые характеристики вектора остатков в классической множественной регрессионной модели
- •Отражение в модели влияния неучтённых факторов и времени.
- •Оценивание параметров в ур-ниях тренда.
- •Оценка адекват-ти полученной эк модeли
- •Оценка коэффициентов модели Самуэльсона-Хикса
- •Оценка параметров множественной регрессионной модели методом наименьших квадратов.
- •Оценка параметров парной регрессионной модели методом наименьших квадратов.
- •Оценка параметров эконометрической модели
- •Оценка статистической значимости коэффициентов модели множественной регрессии
- •Подбор объясняющих переменных множественной линейной модели. Алгоритм исключения квазинеизменных переменных.
- •Подбор объясняющих переменных множественной линейной модели. Метод анализа матрицы коэффициентов корреляции.
- •Подбор переменных в модели множественной регрессии на основе метода оценки информационной ёмкости.
- •Понятие гомоск-сти и гетероск-сти случ-х возмущений, их графич интерпретация.
- •Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в Excel
- •Последствия гетероскедастичности. Тест Голдфелда-Квандта.
- •Предпосылки метода наименьших квадратов
- •Применение обобщенного метода наименьших квадратов (омнк) для случая гетероскедастичности остатков.
- •Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии.
- •Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных.
- •Принципы спецификации эконометрических моделей и их формы.
- •Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности
- •Проверка качества эконометрической модели
- •Прогнозирование экономических переменных. Проверка адекватности модели.
- •Простейшие модели временных рядов. Их свойства.
- •Регрессионные модели с фиктивными переменными.
- •Роль вектора и матрицы корреляции множественной линейной модели при подборе объясняющих переменных.
- •Свойства дисперсии случайной переменной
- •Случайные переменные и их характеристики.
- •Смысл и значение множественной регрессии в эконометрических исследованиях. Выбор формы уравнения множественной регрессии.
- •Составление спецификации модели временного ряда
- •Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам
- •Спецификация моделей со случайными возмущениями и преобразование их к системе нормальных уравнений.
- •Способы корректировки гетероскедастичности. Метод взвешенных наименьших квадратов.
- •Статистические свойства оценок параметров парной регрессионной модели.
- •Статистические характеристики выборки и генеральной совокупности статистических данных. Их соотношения.
- •Суть метода наименьших квадратов. Его графическое пояснение
- •Теорема Гаусса – Маркова.
- •Тест Дарбина – Уотсона, последовательность его выполнения.
- •Тест Стьюдента.
- •Типы переменных в эконометрических моделях. Структурная и приведённая формы спецификации эконометрических моделей.
- •Устранение автокорреляции в парной регрессии
- •Функция регрессии как оптимальный прогноз.
- •Цели и задачи эконометрики. Этапы процесса эконометрического моделирования. Классификация эконометрических моделей.
- •Эконометрика, её задача и метод
- •Эконометрическая инвестиционная модель Самуэльсона-Хикса.
- •Экспоненциальное сглаживание временного ряда.
- •Этапы исследования зависимостей между экономическими явлениями при помощи эконометрической модели. Принципы спецификации модели. Формы эконометрических моделей.
- •Структурная и приведенная формы модели системы эконометрических уравнений
- •Этапы построения эконометрических моделей.
F-тест качества спецификации множественной регрессионной модели.
F-тест - оценивание качества уравнения регрессии - состоит в проверке гипотезы Н0 о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера. Fфакт определяется как
гду
n
— число единиц
совокупности; m
- число параметров
при переменных х
Fтабл – это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости а. Уровень значимости а - вероятность отвергнуть правильную гипотезу при условии, что она верна.
Если Fтабл<Fфакт, то Н0 - гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если Fтабл>Fфакт, то гипотеза Н0 не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.
Автокорреляция случайного возмущения. Причины. Последствия.
Зависимость возмущений в различные моменты времени называется автокорреляцией (сериальной корреляцией). При наличии автокорреляции между элементами вектора случайных возмущений, его количественные характеристики равны:
Е{
}=0
,
Где Ϭ2- дисперсия возмущения.
Причины автокорреляции
Основными причинами в регрессион. моделях являются:
ошибки спецификации модели ( пропуск объясняющей переменной, использование ошибочной функциональной зависимости между переменными и т.д.)
ошибки измерений
характер наблюдений (напр. данные временных рядов).
Последствия автокорреляции
При наличии автокорреляции МНК обеспечивает несмещенные оценки параметров, т. к. первая предпосылка Гаусса-Маркова выполняется,
Е{b^}=E{AY}=AXb+AE{ }=b,
Но
оценка дисперсии возмущения смещенная:
Е{s^2}
.
Это
можно показать след образом. В качестве
оценки дисперсии возмущения используется
оценка:
.
Вектор остатков регрессии е=М при наличии автокорреляции возмущений имеет следующие основные количественные характеристики:
Е(е)=0
.
В этом случае
,
Что приводит к нарушению свойства несмещенности оценки дисперсии возмущения.
Смещенность оценки дисперсии возмущений приводит к неадекватным оценкам:
автоковариационной матрицы оценок параметров
2) границ доверительных интервалов параметров модели и значений эндогенной переменной.
Автокорреляция уровней временного ряда и ее последствия.
Автокорреляция. Методы устранения автокорреляции.
Предположим, что истинная модель задается выражением уt = а + bхt + иt (7.20), так что наблюдения t и t - 1 формируются как yt = a + bxt + ut- (7.23) yt-1 = a + bxt-1+ ut-1, (7.24)
Теперь
вычтем из обеих частей уравнения (7.23)
умноженное на р соотношение (7.24) и
получим: t-рУt-i
=
(7.25)
Обозначим
y~t =
yt -pyr-1, x~t = xt
–pxt-1 и q~t
= 1-p. Тогда
формулу (7.25) можно переписать как
(7.26)
Вместе
с тем из уравнения (7.21) имеем ut
-p ut-1
=
,.
Таким образом, формула (7.26) принимает
вид:
.
(7.27)
Мы предположили, что р известно. Тогда можно вычислить величины y~t, x~t, и qt (последняя одинакова для всех наблюдений) для наблюдений, включающих от 2 до Т исходных данных. Если теперь оценить регрессию между yt, xt и qt (заметим, что в уравнение не должна включаться постоянная), то будут получены оценки а и р, не связанные с проблемой автокорреляции, поскольку, согласно предположению, значения г не зависят друг от друга.
Остается, однако, небольшая проблема. Если в выборке нет данных, предшествующих первому наблюдению, то мы не сможем вычислить у{ и хх и потеряем первое наблюдение. Число степеней свободы уменьшается на единицу, и это вызовет потерю эффективности, которая может в небольших выборках перевесить повышение эффективности от устранения автокорреляции.
Эту проблему, к счастью, можно довольно легко обойти, пользуясь так называемой поправкой Прайса—Уинст. 1954). Случайный член , согласно определению, не зависит от значения и в любом предшествующем наблюдении.
В
частности, все величины
,
...,
не
зависят oт u1.
Следовательно,
если при устранении автокорреляции все
другие наблюдения преобразуются, то не
требуется преобразовывать первое
наблюдение. Можно сохранить его, включив
в новую схему, полагая, что у~1=у1,
q~1=
1, х~1
=x1.
Мы можем таким способом спасти первое
наблюдение.