
- •Предмет электрохимии.
- •Проводники первого и второго рода.
- •Электрохимические реакции.
- •Законы электролиза (законы фарадея).
- •Причины электролитической диссоциации.
- •Подвижность ионов.
- •Подвижность ионов гидроксония и гидроксила.
- •Числа переноса ионов.
- •Недостатки теории аррениуса.
- •Теория электролитов дебая и гюккеля.
- •Диссоциация воды. РН растворов.
- •Диссоциация слабых электролитов.
- •Гидролиз солей.
- •Буферные растворы.
- •Произведение растворимости.
- •Гальванические элементы. Эдс.
- •Термодинамика гальванического элемента.
- •Измерение эдс.
- •Строение границы электродраствор. Двойной электрический слой.
- •Электродный потенциал.
- •Классификация электродов.
- •Электроды первого рода.
- •Электроды второго рода.
- •Газовые электроды.
- •Амальгамные электроды.
- •Физические цепи.
- •Концентрационные цепи.
- •Химические цепи.
- •Аккумуляторы.
- •Кинетика электрохимических процессов.
- •Концентрационная поляризация.
- •Электрохимическое перенапряжение.
- •Напряжение разложения.
- •Закономерности перенапряжения выделения водорода.
- •1. Влияние плотности тока
- •2. Влияние природы металла
- •3. Влияние природы и состава раствора
- •4. Влияние температуры и некоторых других факторов
- •Теории водородного перенапряжения.
- •Теория замедленной рекомбинации
- •Теория замедленного разряда
- •Электроосаждение металлов.
- •Анодное растворение и пассивность металлов.
- •Коррозия металлов. Борьба с коррозией.
3. Влияние природы и состава раствора
а) Влияние растворителя. Наибольшее число исследований по перенапряжению водорода выполнено с водными растворами. Для ртути и для некоторых др. металлов были получены данные также и в неводных растворах кислот. Характер изменения с изменением растворителя точно не установлен. Перенапряжение выделения водорода на ртути из раствора HCl в этиловом и метиловом спиртах ниже, чем из водных растворов; для Cu и Ni в спиртовых растворах оно выше, чем в водных. Для металлов с низким природа растворителя играет меньшую роль.
б) Влияние рН раствора на перенапряжение водорода с наибольшей полнотой изучено на ртути. Установлено, что в растворах чистых кислот в области концентраций до 0,1н не является функцией рН; при более высоких концентрациях зависит от рН, уменьшаясь с увеличением концентрации кислоты, причем /рН составляет примерно 60 мВ. Если растворы кроме кислоты содержат также избыток постороннего электролита, то подобное изменение с рН наблюдается и для концентраций кислоты, меньших 0,1н. При избытке постороннего электролита такой ход с рН наблюдается и для разбавленных растворов щелочей. Т.о., максимальное перенапряжение водорода соответствует нейтральным растворам и линейно уменьшается с отклонением рН в ту или иную сторону от точки нейтральности. В концентрированных растворах кислот и оснований соотношение между и составом раствора становится более сложным. Для других металлов : на Ni изменяется с рН незначительно и не подчиняется простой линейной зависимости; на Pb и Pt оно почти не зависит от рН раствора.
в) водорода очень чувствительно к присутствию в электролите посторонних веществ. Добавки солей к разбавленным растворам кислот увеличивают на ртути, причем увеличение концентрации 1-1 зарядного электролита в 10 раз (при постоянном рН) повышает примерно на 55–58 мВ. Первоначальная добавка электролита с поливалентным катионом оказывает большее действие, чем такая же добавка 1-1 зарядного электролита. Поверхностно-активные вещества (анионы, катионы и молекулярные вещества) или повышают, или понижают на ртути, в зависимости от их природы. ПАВ сильнее всего влияют на величину в области малых плотностей тока; действие этих добавок ослабляется с ростом плотности тока и при высоких ее значениях полностью исчезает. На Pt, Fe и Ni также возрастает при введении ПАВ; характер влияния ПАВ на и на этих металлах является функцией потенциала электрода.
4. Влияние температуры и некоторых других факторов
водорода уменьшается с ростом Т, причем температурный коэффициент зависит от природы металла и плотности тока. Т.к. константа b увеличивается, а константа а уменьшается с ростом Т, то температурный эффект больше выражен в области низких плотностей тока. В среднем (d/dT)i составляет 1 – 4 мВ/К. Если считать, что полулогарифмическая зависимость сохраняется неизменной до высоких плотностей тока, то, начиная с некоторого значения плотности тока, можно ожидать пересечения полулогарифмических прямых и изменения знака температурного коэффициента перенапряжения.
Зависимость от давления водорода почти не изучена. Есть данные, что на ртути и гладкой платине несколько уменьшается при повышении давления.
На водорода на металлах железной и платиновой групп влияют ультразвуковые колебания. изменяется под действием светового облучения и потока радиоактивных частиц.