
- •1.Общие сведения об электроэнергетических системах.
- •2. Сведения об энергетике рб и перспективах ее развития
- •3. Структурная технологическая схема получения ээ на кэс
- •4. Структурная технологическая схема получения ээ на тэц
- •5. Структурная технологическая схема получения ээ на аэс
- •6. Структурная технологическая схема получения ээ на гэс
- •7.Схемы первичных соединений электростанций и назначение эл оборудования в них
- •8.Воздействие электростанций на окружающую среду
- •16. Конструкции токоведущих частей электроустановок. Токопроводы генераторов и трансформаторов.
- •19. Закрытые токопроводы
- •20. Кабельные соединения
- •21. Условия работы проводников и аппаратов при длительном протекании токов нагрузки
- •33 Разъединители для внутренней установки
- •34 Разъединители для наружной установки
- •36 Высоковольтные плавкие предохранители. Назначение, принцип действия и характеристики
- •40 Маломасляные выключатели. Принцип действия и конструкция серии у
- •42. Воздушные выключатели. Конструкция и принцип действия выключателя ввб-110
- •43. Электромагнитные выключатели
- •44.Вакуумные выключатели. Конструкция выключателя вбп-с-10
- •Конструктивное исполнение вакуумных выключателей
- •45 Автогазовые выключатели
- •46. Элегазовые выключатели.Конструкция выключателя вгу-220
- •47. Синхронизированные выключатели. Принцип действия. Функциональная схема
- •48. Выключатели нагрузки с гасительными устройствами газогенерирующего типа внпр
- •49 Выключатели нагрузки элегазовые внэ-ш-110
- •50 Вакуумные выключатели нагрузки внв-10/320
- •51 Пружинные приводы
- •52 Электромагнитные приводы выключателей
- •53 Приводы выключателей вн. Пневматические и пневмогидравлические приводы
- •54 Приводы разъединителей
45 Автогазовые выключатели
46. Элегазовые выключатели.Конструкция выключателя вгу-220
Элегаз (SF6 – шестифтористая сера) представляет собой инертный газ, плотность которого превышает плотность воздуха в 5 раз. Электрическая прочность элегаза в 2 – 3 раза выше прочности воздуха; при давлении 0,2 МПа электрическая прочность элегаза сравнима с прочностью масла.
В элегазе при атмосферном давлении может быть погашена дуга с током, который в 100 раз превышает ток, отключаемый в воздухе при тех же условиях. Исключительная способность элегаза гасить дугу объясняется тем, что его молекулы улавливают электроны дугового столба и образуют относительно неподвижные отрицательные ионы. Потеря электронов делает дугу неустойчивой, и она легко гаснет. В струе элегаза, т. е. при газовом дутье, поглощение электронов из дугового столба происходит еще интенсивнее.
В элегазовых выключателях применяют автопневматические (автокомпрессионные) дугогасительные устройства, в которых газ в процессе отключения сжимается поршневым устройством и направляется в зону дуги. Элегазовый выключатель представляет со-бой замкнутую систему без выброса газа наружу.
В настоящее время элегазовые выключатели применяются на всех классах напряжений (6-750 кВ) при давлении 0,15 – 0,6 МПа. Повышенное давление применяется для выключателей более высоких классов напряжения. Хорошо зарекомендовали элегазовые выключа-тели следующих зарубежных фирм: ALSTOM; SIEMENS; Merlin Gerin и др. Освоен выпуск современных элегазовых выключателей ПО "Уралэлектротяжмаш": баковые выключатели серии ВЭБ, ВГБ и колонковые выключатели серии ВГТ, ВГУ.
В качестве примера рассмотрим конструкцию выключателя серии LF фирмы Merlin Gerin напряжением 6-10 кВ.
Базовая модель выключателя состоит из следующих элементов:
– корпуса выключателя, в котором расположены все три полюса, представляющего собой "сосуд под давлением", заполненный элегазом под низким избыточным давлением (0,15 МПа или 1,5 атм.);
– механического привода типа RI;
– передней панели привода с рукояткой для ручного взвода пружин и индикаторами состояния пружины и выключателя;
– высоковольтных силовых контактных площадок;
– многоштырьевого разъема для подключения цепей вторичной коммутации.
47. Синхронизированные выключатели. Принцип действия. Функциональная схема
Во всех рассмотренных выше выключателях расхождение контактов может начинаться при любом значении коммутируемого тока.
Интеграл берется за каждый полупериод, после чего энергия суммируется. Возрастание номинального тока отключения выключателей ведет к увеличению энергии Лд, выделяемой в дуговом промежутке. При этом усложняется конструкция выключателей, увеличиваются их габаритные размеры и масса. Кроме того, с ростом энергии Аа увеличивается износ контактов. Даже применение металлокерамических контактов не решает этого вопроса при большом числе отключений. Режим отключения можно значительно облегчить, если ограничить выделяемую в дуге энергию. Это достигается синхронизацией момента начала расхождения контактов с моментом прохождения тока через нуль при высокой скорости движения контактов.
Схемы и методы синхронизации весьма разнообразны [3, 9]. Рассмотрим принцип синхронизации с запоминанием тока (метод МЭИ). Назовем время подачи синхронизирующего сигнала временем упреждения гупр. После начала КЗ производится измерение значения тока и времени его наступления (рис. 30,6).
Полное время отключения синхронизированного выключателя вместе с защитой лежит в пределах 0,02 с. По сравнению с другими типами синхронизированные выключатели имеют следующие преимущества: 1. Малая длительность горения дуги. Значительно уменьшаются износ контактов и эксплуатационные расходы. 2. Облегчается процесс гашения дуги. Уменьшение выделяемой дугой энергии позволяет увеличить номинальный ток отключения при том же расходе воздуха. 3. Увеличивается скорость восстановления электрической прочности промежутка. Работа выключателя при высоких скоростях восстановления напряжения допустима без шунтирующих резисторов. 4. Отключение КЗ за время г<0,02 с повышает динамическую устойчивость энергосистем промышленной частоты. Недостатком синхронизированных выключателей является сложность схемы и конструкции, наличие большого количества элементов, что сказывается на надежности работы. В связи с этим развитие синхронизированных выключателей на высокие напряжения временно затормозилось. Тем не менее принцип синхронного размыкания цепи используется во взрывных предохранителях с напряжением 6—10 кВ. Синхронизирующий сигнал приводит в действие взрывное устройство, разрушающее плавкую вставку, расположенную в трансформаторном масле. Благодаря высокому давлению (10—15 МПа) гашение дуги происходит при первом прохождении тока через нуль. Отключаемые токи могут достигать 200 кА при напряжении 10 кВ. Синхронизированное размыкание контактов используется и в полупроводниковых отключающих аппаратах.
Рис.
30. Синхронизированное
отключение цепей высокого напряжения:
а
— структурная схема синхронизированного
выключателя; б — к пояснению метода
синхронизации
Структурная схема одного из вариантов синхронизированного выключателя представлена на рис. 30. Трансформатор тока ТА питает синхронизатор 1, который выдает запускающий импульс 1,5—2 мс до момента прохождения тока через нуль. К этому моменту расстояние между контактами должно быть достаточным для надежного гашения дуги. При этом энергия, выделяемая при расхождении контактов, уменьшается в 10—50 раз. Уменьшается не только время горения дуги (до 1,5—2 мс), но и максимальное значение тока в дуге (до 0,21т). Все это создает благоприятные условия для гашения дуги при первом прохождении тока через нуль. На логический элемент 3 подаются сигналы от синхронизатора 1 и релейной защиты 2. Сигнал на выходе этого блока появляется при наличии сигнала от релейной защиты. От логического элемента 3 подается сигнал в систему оптической передачи 4—6. Сигнал по волоконному световоду 5 поступает на фотоприемник 6, в качестве которого используются фотодиоды либо фототиристоры. Сигнал приемника 6 используется для управления индукционно-динамическим приводом 7, 8, обеспечивающим необходимую скорость подвижного контакта 9 выключателя. Принцип действия индукционно-динамического привода следующий. От источника питания ИП через трансформатор Т и диод заряжается конденсаторная батарея с емкостью С=100н-300 мкФ и напряжением батареи 3—5 кВ. При поджиге трехэлектродного разрядника 10 конденсатор разряжается на катушку 7, расположенную вблизи диска 8, изготовленного из материала с очень малым электрическим сопротивлением. Диск жестко связан с подвижным контактом 9. Разряд батареи имеет колебательный характер с частотой 1—5 кГц. Под действием магнитного поля катушки, изменяющегося с такой частотой, в диске наводятся вихревые токи. Эти токи взаимодействуют с током катушки и создают силу, отталкивающую диск от катушки. Диск жестко связывается с подвижным контактом. Описанный индукционно-динамический привод обладает очень высоким быстродействием. Для повышения быстродействия диск привода связан с подвижным контактом без каких-либо промежуточных передач. Время передачи импульса от синхронизатора до трехэлектродного разрядника составляет десятки микросекунд, так что полное время отключения выключателя не превышает 1,5—2 мс.