
- •Содержание
- •Глава 1. Автоматизированные системы управления технологическими процессами
- •Глава 2. Информационное обеспечение асутп
- •Глава 3. Моделирование технологических объектов, управляемых асутп
- •Глава 4. Алгоритмы управления в асутп
- •Глава 5. Алгоритмы управления технологическим циклом
- •Глава 6. Особенности проектирования асутп
- •Глава 7. Системы программного управления производственными установками
- •Основные понятия и термины
- •Введение
- •Контрольные вопросы к введению
- •Глава 1. Автоматизированные системы управления технологическими процессами
- •Асутп как основа автоматизации технологических процессов
- •Основные функции и структура асутп
- •Структура и основные функции увм
- •Контрольные вопросы к главе 1
- •Глава 2. Информационное обеспечение асутп
- •Энтропия как мера информации
- •Количественная оценка информации
- •Кодирование информации
- •Двоичные коды
- •Экономичность двоичного кодирования
- •Арифметические двоичные коды
- •Неарифметические двоичные коды
- •2.5. Передача информации по каналам связи
- •2.5.1. Промышленные информационные сети
- •2.5.2. Последовательные интерфейсы по стандартам rs232c и rs485
- •2.5.3. Защита информации от искажений
- •2.6. Организация обмена информацией в асутп
- •2.6.1. Информационная структура асутп
- •2.6.2. Информационные сети Ethernet
- •2.6.3. Структура физической среды Ethernet
- •2.6.4.Контроллерные и полевые сети
- •2.6.5. Диспетчеризация в рамках асутп
- •Контрольные вопросы к главе 2
- •Глава 3. Моделирование технологических объектов, управляемых асутп
- •3.1. Алгоритмы функционирования
- •3.2. Аналитические методы моделирования
- •3.3. Моделирование технологических циклов
- •3.4. Экспериментальные методы получения моделей технологических объектов
- •3.4.1. Одномерные модели
- •3.4.2. Многомерные модели
- •Контрольные вопросы к главе 3
- •Глава 4. Алгоритмы управления асутп
- •4.1. Задачи управления в асутп
- •4.2. Алгоритмы стабилизации управляющих параметров
- •4.3. Алгоритмы автоматической оптимизации
- •4.3.1. Статическая и динамическая оптимизация
- •4.3.2. Симплексный метод линейного программирования
- •4.4. Градиентные методы автоматической оптимизации
- •4.4.1. Поиск экстремума целевой функции
- •4.4.2. Автоматическая оптимизация электрохимической обработки
- •4.4.3. Поиск предельно допустимого оптимального режима
- •4.5. Применение методов нечеткой логики в асутп
- •4.5.1. Понятия и операции нечеткой логики
- •4.5.2. Синтез нечеткого регулятора положения
- •Контрольные вопросы к главе 4
- •Глава 5. Алгоритмы управления технологическим циклом
- •5.1. Задачи управления технологическим циклом
- •5.2. Синтез алгоритмов комбинационных схем управления
- •5.3.Схемная реализация релейно-контактных комбинационных схем
- •5.4. Схемная реализация комбинационных схем на логических элементах
- •То окажется, что
- •5.5. Синтез алгоритмов последовательностных автоматов
- •5.5.1. Общая структура последовательностного автомата
- •5.5.2. Составление схемы простейшего автомата
- •5.6. Реализация алгоритмов управления последовательностных автоматов
- •5.6.1. Виды запоминающих устройств
- •5.6.2. Триггеры
- •5.6.3. Регистры
- •5.6.4. Преобразователи кодов и арифметические устройства
- •5.7. Обобщенные алгоритмы управления технологическим циклом
- •Контрольные вопросы к главе 5
- •Глава 6. Особенности проектирования асутп
- •6.1. Основные задачи и принципы проектирования
- •6.2. Этапы разработки и внедрения асутп
- •Контрольные вопросы к главе 6
- •Глава. 7. Системы программного управления производственными установками
- •Локальные системы программного управления
- •Программируемые контроллеры
- •7.3.1. Структура плк
- •7.3.2.Языки программирования плк
- •7.3.3. Язык программирования il
- •Устройства числового программного управления
- •Программирование учпу
- •7.6.Исполнительные устройства учпу
- •Контрольные вопросы к главе 7
- •Литература
- •Приложение 2. Базовые понятия теории вероятностей п.2.1. Случайные события и их вероятность
- •П.2.2. Основные свойства вероятностей
- •П.2.3. Дискретные случайные величины
- •П.2.4. Биномиальное распределение
- •П.2.5. Распределение Пуассона
- •П.2.6. Непрерывные случайные величины. Плотность распределения вероятностей
- •П.2.7. Числовые характеристики распределения вероятностей
- •П2.8. Непрерывные законы распределения и их числовые характеристики
- •Приложение 3. Элементы булевой алгебры формальной логики п3.1. Объекты булевой алгебры
- •П3.2. Операции сложения и умножения
- •Свойство поглощения становится понятным в следующей цепочке преобразований:
- •При описании операций сложения и умножения логических переменных иногда вместо знака плюс употребляют символ , а в качестве знака умножения – символ . П3.3. Операция инверсии и законы Де Моргана
- •Приложение 4 Символы и функции стандартного кода iso–7 для чпу (гост 20999–83)
Структура и основные функции увм
Управляющие устройства могут быть построены на дискретных элементах или выполнены в виде УВМ. Будем считать, что управляющее устройство выполнено на дискретных элементах, если в нем функции управления реализуются без применения процессоров. И напротив, если основные логические и арифметические операции, необходимые для осуществления процесса управления, реализуются с помощью микропроцессорных конструкций, то такое управляющее устройство является УВМ. Коротко говоря, управляющая вычислительная машина (УВМ) – это управляющее устройство, построенное на базе микро-ЭВМ.
Управляющие устройства на дискретных элементах, такие как магнитные пускатели и аналоговые системы управления электроприводами, применяются в АСУТП на нижних уровнях управления, а на верхних уровнях применяются исключительно УВМ (см. рис.1.1). Тем не менее, многие важные функции УВМ, связанные с вводом, выводом, отображением, преобразованием информации, реализуются на дискретных элементах, не входящих в микропроцессорные комплекты, таких как клавиатура, дисплей, магнитные запоминающие диски и дискеты, аналого-цифровые и цифро-аналоговые преобразователи и пр.
Структура УВМ в составе АСУТП показана на рис.1.2. Конструктивно УВМ выполняется в виде пульта управления ПУ и процессорного (системного) блока ПБ. На рис. 1.2 показано, что УВМ управляет технологическим объектом ТО с параметрами Y посредством управляющих сигналов Х. Пульт управления ПУ является основой рабочего места оператора, осуществляющего контроль работы АСУТП. Через ПУ поступает исходная информация в виде управляющих программ (УП), считываемых с магнитных дисков и дискет внешнего запоминающего устройства (ВЗУ). С помощью клавиатуры ПУ оператор может составлять и корректировать управляющие программы и контролировать ход управляемого технологического процесса, а дисплей ПУ представляет оператору визуальную информацию о ходе процесса и о содержании УП. Наконец с помощью принтера производится распечатка отчетно-справочной информации о выполнении производственных заданий. Обмен информацией в УВМ осуществляется через стандартные устройства ввода-вывода УВВ, состоящие из параллельного и последовательного интерфейсов (портов), причем для связи внутри ПБ обычно используется параллельный интерфейс. Через последовательный интерфейс реализуется связь с отдаленными корреспондентами и, прежде всего, с ЦУВМ, если она есть.
Рис. 1.2. Структура УВМ в составе АСУТП
Информация, поступающая в ПБ с пульта управления или непосредственно от ЦУВМ через УВВ, запоминается в устройствах памяти (ЗУ), состоящих из постоянного (ПЗУ) и оперативного (ОЗУ) запоминающих устройств. В ПЗУ содержится операционная система УВМ, инструментальное программное обеспечение для создания УП, сами УП и общие сведения об управляемом технологическом объекте. В ОЗУ хранятся управляющие программы, находящиеся в работе, и текущая информация о ходе реализуемого технологического процесса, о состоянии технологического оборудования и самой УВМ. Основным устройством, осуществляющим переработку поступающей информации в УВМ и выдачу управляющих сигналов, является центральный процессор (ЦП), состоящий из арифметико-логического (АЛУ) и управляющего (УУ) устройств. АЛУ осуществляет арифметическую и логическую обработку информации с выработкой управляющих сигналов, а УУ определяет, какие арифметико-логические операции и в каком порядке должно реализовать АЛУ в соответствии с заданной программой. Специфическими устройствами, отличающими УВМ от обычных ЭВМ, являются устройства связи с ТО (УСО) и модули обработки технологической информации (МОТИ).
УСО – это модули прямой связи управления. Они преобразуют приходящие с процессора управляющие сигналы, чтобы согласовать их с входными цепями ТО, в то время как МОТИ преобразуют приходящие с ТО сигналы обратной связи (сигналы Y) о параметрах ТО. Если рассматриваемая на рис.1.2 УВМ является для данного ТО центральной, то она управляет входящими в состав ТО локальными УВМ. В таком случае и УСО, и МОТИ, показанные на рис.1.2, состоят из стандартных УВВ, объединяющих все УВМ данной АСУТП в информационную и управляющую локальную сеть. Если же рассматривать УВМ, показанную на рис.1.2, как локальную, то УСО должны обеспечивать согласование управляющих сигналов УВМ со входными цепями различных дискретных цифровых и непрерывных (аналоговых) управляющих устройств нижнего уровня управления, на котором обычно производится управление электроприводами (см.рис.1.1).
Основные функции модулей УСО в составе ЛУВМ таковы:
усиление управляющих сигналов с соответствующим преобразованием их по уровню и по виду;
преобразование кодов цифровых управляющих сигналов (параллельного кода в последовательный и др.);
цифро-аналоговое преобразование сигналов перед подачей их на аналоговые управляющие устройства;
потенциальное разделение цепей управления.
Что касается МОТИ, то в ЛУВМ они должны совершить обратное преобразование сигналов обратной связи, идущих от управляющих устройств нижнего уровня управления и от технологического оборудования, к виду, приемлемому для системы сигналов, циркулирующих в УВМ. МОТИ производят:
согласование уровней дискретных сигналов обратной связи и УВМ;
аналого-цифровое преобразование аналоговых сигналов обратной связи, поступающих от аналоговых управляющих устройств и исполнительных механизмов;
преобразование кодов цифровых сигналов обратной связи (последовательного в параллельный и др.);
потенциальное разделение цепей управления.
В качестве примеров преобразования выходных сигналов УВМ приведем преобразование дискретного управляющего сигнала уровня до 5 В и до 5 мА тока (но предназначенного для включения контактора переменного тока) в переменное напряжение 110 В с током до 2 А, а также преобразование цифрового сигнала, предназначенного для управления электроприводом, в стандартное задающее напряжение в пределах 0 – 10 В. Примером преобразования сигналов обратной связи может служить преобразование сигналов конечных выключателей, переключающих постоянное напряжение 24 В, в стандартный сигнал УВМ напряжением до 5 В. Таким же примером может быть счет импульсов датчиков перемещения, в результате которого величина перемещения фиксируется в УВМ в виде числа отсчитанных импульсов.
Устройства УСО и МОТИ выполняются в виде модульных конструкций, объединяющих в себе несколько каналов однотипных преобразователей, таких как преобразователи уровней, аналого-цифровые преобразователи и пр. При необходимости такие устройства строятся на базе микропроцессоров, как, например, модули управления сервоприводами.