Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_po_GGD_polnye.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
713.52 Кб
Скачать

31. Гидравлический удар. Формула н.Е. Жуковского

Гидравли́ческийуда́р (гидроудар) — скачок давления в какой-либо системе, заполненной жидкостью, вызванный крайне быстрым изменением скорости потока этой жидкости за очень малый промежуток времени. Может возникать вследствие резкого закрытия или открытия задвижки. В первом случае гидроудар называют положительным, во втором - отрицательным. Опасен положительный гидроудар. При положительном гидроударе несжимаемую жидкость следует рассматривать как сжимаемую. Гидравлический удар способен вызывать образование продольных трещин в трубах, что может привести к их расколу, или повреждению других элементов трубопровода. Также гидроудары чрезвычайно опасны и для другого оборудования, такого как теплообменники, насосы и сосуды , работающие под давлением. Для предотвращения гидроударов, вызванных резкой переменой направления потока рабочей среды, на трубопроводах устанавливаются обратные клапаны.

Гидроударом также ошибочно называют следствие заполнения надпоршневого пространства в поршневом двигателе водой, вследствие чего поршень, не дойдя до мёртвой точки, начинает сжимать жидкость, что приводит к внезапной остановке и поломке мотора (излому шатуна или штока, обрыву шпилек головки цилиндра, разрыву прокладки).

В зависимости от времени распространения ударной волны   и времени перекрытия задвижки t, в результате которого возник гидроудар, можно выделить 2 вида ударов:

  • Полный (прямой) гидравлический удар, если t < 

  • Неполный (непрямой) гидравлический удар, если t > 

При полном гидроударе фронт возникшей ударной волны движется в направлении, обратном первоначальному направлению движения жидкости в трубопроводе. Его дальнейшее направление движения зависит от элементов трубопровода, расположенных до закрытой задвижки. Возможно и повторное неоднократное прохождения фронта волны в прямом и обратном направлениях.

При неполном гидроударе фронт ударной волны не только меняет направление своего движения на противоположное, но и частично проходит далее сквозь не до конца закрытую задвижку.

Явление гидравлического удара открыл в 1897—1899 г. Н. Е. Жуковский. Увеличение давления при гидравлическом ударе определяется в соответствии с его теорией по формуле:

где   — увеличение давления в Н/м²,

 — плотность жидкости в кг/м³,

 и   — средние скорости в трубопроводе до и после закрытия задвижки (запорного клапана) в м/с,

с — скорость распространения ударной волны вдоль трубопровода.

Жуковский доказал, что скорость распространения ударной волны c находится в прямо пропорциональной зависимости от сжимаемости жидкости, величины деформации стенок трубопровода, определяемой модулем упругости материала E, из которого он выполнен, а также от диаметра трубопровода.

Следовательно, гидравлический удар не может возникнуть в трубопроводе, содержащем газ, так как газ легко сжимаем.

Зависимость между скоростью ударной волны c, её длиной и временем распространения (L и   соответственно) 

32. Насосы. Основные определения. Классификация.

Насосы представляют собой гидравлические машины, предназначенные для перемещения жидкостей под напором. Преобразуя механическую энергию приводного двигателя в механическую энергию движущейся жидкости, насосы поднимают жидкость на определенную высоту, подают ее на необходимое расстояние в горизонтальной плоскости или заставляют циркулировать в  какой-либо  замкнутой  системе.

Выполняя одну или несколько упомянутых функций, насосы в любом случае входят в состав оборудования насосной станции, принципиальная схема которой применительно к условиям водоснабжения и канализации. В этой схеме для привода насоса используется электродвигатель, подключенный к электрической сети. Вода или другая рабочая жидкость забирается насосом из нижнего бассейна и перекачивается по напорному трубопроводу в верхний бассейн за счет преобразования энергии двигателя в энергию жидкости. Энергия жидкости, прошедшей через насос, всегда больше, чем энергия перед насосом.

Основными параметрами насосов, определяющими диапазон изменения режимов работы насосной станции, состав ее оборудования и конструктивные особенности, являются напор, подача, мощность и коэффициент полезного действия.

Напор представляет собой приращение удельной энергии жидкости на участке от входа в насос до   выхода   из   него.   Выраженный в метрах напор насоса определяет высоту подъема или дальность перемещения жидкости

Подача характеризуется объемом жидкости, подаваемой насосом в напорный трубопровод в единицу времени, и измеряется обычно в м/с, л/с или м3/ч.

Мощность, затрачиваемая насосом, необходима для создания нужного напора и преодоления всех видов потерь неизбежных при преобразовании подводимой к насосу механической энергии в энергию движения жидкости по трубопроводам. Измеряемая в кВт мощность насоса определяет мощность приводного двигателя и суммарную (установленную) мощность насосной станции.

Коэффициент полезного действия учитывает все виды потерь связанных с преобразованием насосом механической .энергии двигателя в энергию движущейся жидкости. КПД определяет экономическую целесообразность эксплуатации насоса при изменении остальных его рабочих параметров (напора, подачи, мощности).

Классификация насосов:

- насосы возвратно-поступательного действия ( поршневые и мембранные);

- роторные насосы ( шестерные, винтовые, коловратные, пластинчатые, роликовые);

- динамические насосы ( лопастные и вихревые );

- специальные насосы ( струйные и электромагнитные).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]