- •1.Гидрогазодинамика.Предмет ггд. Развитие ггд. Место ггд в механике.
- •2.Основные св-ва жидкостей и газов
- •3.Гидростатическое давление и его свойства
- •4.Основное уравнение гидростатики
- •5.Сила гидростатического давления жидкости на плоскую поверхность.
- •7.Прикладные вопросы гидростатики. Пьезометрическая высота. Вакуум.
- •8.Закон Архимеда. Условия плавания тел.
- •9.Приборы для измерения давления
- •10.Гидродинамика.Основные понятия(живое сечение, линия тока, трубка тока).
- •11. Уравнение неразрывности.
- •12. Уравнение Бернулли для струйки идеальной жидкости
- •13.Уравнение Бернулли для потока реальной жидкости.
- •14.Практическое применение уравнения Бернулли (водомер Вентури, трубка Пито).
- •15.Режимы движения жидкости. Критерий Рейнольдса.
- •16.Ламинарное движение жидкости.
- •17.Турбулентное движение жидкости.
- •18.Кавитация
- •19.Общие сведения о гидравлических сопротивлениях.
- •20.Коэффициент гидравлического трения при турбулентном и ламинарном течениях в трубах.
- •21. Потери напора в местных сопротивлениях
- •22. Расчет потерь на местных сопротивлениях и потерь на трение по длине трубопровода
- •23. Истечение жидкости из малых отверстий в тонкой стенке при постоянном напоре
- •24. Истечение через насадки при постоянном напоре
- •25. Истечения через отверстия при переменном напоре
- •26. Расчет простых трубопроводов
- •27. Расчет простых, последовательно соединенных трубопроводов
- •28. Расчет простых, параллельно соединенных трубопроводов
- •29.Расчет сложных трубопроводов
- •31. Гидравлический удар. Формула н.Е. Жуковского
- •33. Устройство и принцип действия центробежного насоса.
- •34. Напор, подача, кпд, мощность центробежного насоса.
- •35.Характеристика центробежного насоса.
- •38. Регулирование подачи центробежных насосов.
- •37. Помпаж
- •39. Параллельная работа центробежных насосов.
- •40. Последовательная работа центробежных насосов.
31. Гидравлический удар. Формула н.Е. Жуковского
Гидравли́ческийуда́р (гидроудар) — скачок давления в какой-либо системе, заполненной жидкостью, вызванный крайне быстрым изменением скорости потока этой жидкости за очень малый промежуток времени. Может возникать вследствие резкого закрытия или открытия задвижки. В первом случае гидроудар называют положительным, во втором - отрицательным. Опасен положительный гидроудар. При положительном гидроударе несжимаемую жидкость следует рассматривать как сжимаемую. Гидравлический удар способен вызывать образование продольных трещин в трубах, что может привести к их расколу, или повреждению других элементов трубопровода. Также гидроудары чрезвычайно опасны и для другого оборудования, такого как теплообменники, насосы и сосуды , работающие под давлением. Для предотвращения гидроударов, вызванных резкой переменой направления потока рабочей среды, на трубопроводах устанавливаются обратные клапаны.
Гидроударом также ошибочно называют следствие заполнения надпоршневого пространства в поршневом двигателе водой, вследствие чего поршень, не дойдя до мёртвой точки, начинает сжимать жидкость, что приводит к внезапной остановке и поломке мотора (излому шатуна или штока, обрыву шпилек головки цилиндра, разрыву прокладки).
В
зависимости от времени распространения
ударной волны
и
времени перекрытия задвижки
t,
в результате которого возник
гидроудар, можно выделить 2 вида ударов:
Полный (прямой) гидравлический удар, если t <
Неполный (непрямой) гидравлический удар, если t >
При полном гидроударе фронт возникшей ударной волны движется в направлении, обратном первоначальному направлению движения жидкости в трубопроводе. Его дальнейшее направление движения зависит от элементов трубопровода, расположенных до закрытой задвижки. Возможно и повторное неоднократное прохождения фронта волны в прямом и обратном направлениях.
При неполном гидроударе фронт ударной волны не только меняет направление своего движения на противоположное, но и частично проходит далее сквозь не до конца закрытую задвижку.
Явление гидравлического удара открыл в 1897—1899 г. Н. Е. Жуковский. Увеличение давления при гидравлическом ударе определяется в соответствии с его теорией по формуле:
где
—
увеличение давления в Н/м²,
— плотность жидкости
в кг/м³,
и
—
средние скорости в трубопроводе до и
после закрытия задвижки (запорного
клапана)
в м/с,
с — скорость распространения ударной волны вдоль трубопровода.
Жуковский доказал, что скорость распространения ударной волны c находится в прямо пропорциональной зависимости от сжимаемости жидкости, величины деформации стенок трубопровода, определяемой модулем упругости материала E, из которого он выполнен, а также от диаметра трубопровода.
Следовательно, гидравлический удар не может возникнуть в трубопроводе, содержащем газ, так как газ легко сжимаем.
Зависимость между скоростью ударной волны c, её длиной и временем распространения (L и соответственно)
32. Насосы. Основные определения. Классификация.
Насосы представляют собой гидравлические машины, предназначенные для перемещения жидкостей под напором. Преобразуя механическую энергию приводного двигателя в механическую энергию движущейся жидкости, насосы поднимают жидкость на определенную высоту, подают ее на необходимое расстояние в горизонтальной плоскости или заставляют циркулировать в какой-либо замкнутой системе.
Выполняя одну или несколько упомянутых функций, насосы в любом случае входят в состав оборудования насосной станции, принципиальная схема которой применительно к условиям водоснабжения и канализации. В этой схеме для привода насоса используется электродвигатель, подключенный к электрической сети. Вода или другая рабочая жидкость забирается насосом из нижнего бассейна и перекачивается по напорному трубопроводу в верхний бассейн за счет преобразования энергии двигателя в энергию жидкости. Энергия жидкости, прошедшей через насос, всегда больше, чем энергия перед насосом.
Основными параметрами насосов, определяющими диапазон изменения режимов работы насосной станции, состав ее оборудования и конструктивные особенности, являются напор, подача, мощность и коэффициент полезного действия.
Напор представляет собой приращение удельной энергии жидкости на участке от входа в насос до выхода из него. Выраженный в метрах напор насоса определяет высоту подъема или дальность перемещения жидкости
Подача характеризуется объемом жидкости, подаваемой насосом в напорный трубопровод в единицу времени, и измеряется обычно в м/с, л/с или м3/ч.
Мощность, затрачиваемая насосом, необходима для создания нужного напора и преодоления всех видов потерь неизбежных при преобразовании подводимой к насосу механической энергии в энергию движения жидкости по трубопроводам. Измеряемая в кВт мощность насоса определяет мощность приводного двигателя и суммарную (установленную) мощность насосной станции.
Коэффициент полезного действия учитывает все виды потерь связанных с преобразованием насосом механической .энергии двигателя в энергию движущейся жидкости. КПД определяет экономическую целесообразность эксплуатации насоса при изменении остальных его рабочих параметров (напора, подачи, мощности).
Классификация насосов:
- насосы возвратно-поступательного действия ( поршневые и мембранные);
- роторные насосы ( шестерные, винтовые, коловратные, пластинчатые, роликовые);
- динамические насосы ( лопастные и вихревые );
- специальные насосы ( струйные и электромагнитные).
