- •1.Гидрогазодинамика.Предмет ггд. Развитие ггд. Место ггд в механике.
- •2.Основные св-ва жидкостей и газов
- •3.Гидростатическое давление и его свойства
- •4.Основное уравнение гидростатики
- •5.Сила гидростатического давления жидкости на плоскую поверхность.
- •7.Прикладные вопросы гидростатики. Пьезометрическая высота. Вакуум.
- •8.Закон Архимеда. Условия плавания тел.
- •9.Приборы для измерения давления
- •10.Гидродинамика.Основные понятия(живое сечение, линия тока, трубка тока).
- •11. Уравнение неразрывности.
- •12. Уравнение Бернулли для струйки идеальной жидкости
- •13.Уравнение Бернулли для потока реальной жидкости.
- •14.Практическое применение уравнения Бернулли (водомер Вентури, трубка Пито).
- •15.Режимы движения жидкости. Критерий Рейнольдса.
- •16.Ламинарное движение жидкости.
- •17.Турбулентное движение жидкости.
- •18.Кавитация
- •19.Общие сведения о гидравлических сопротивлениях.
- •20.Коэффициент гидравлического трения при турбулентном и ламинарном течениях в трубах.
- •21. Потери напора в местных сопротивлениях
- •22. Расчет потерь на местных сопротивлениях и потерь на трение по длине трубопровода
- •23. Истечение жидкости из малых отверстий в тонкой стенке при постоянном напоре
- •24. Истечение через насадки при постоянном напоре
- •25. Истечения через отверстия при переменном напоре
- •26. Расчет простых трубопроводов
- •27. Расчет простых, последовательно соединенных трубопроводов
- •28. Расчет простых, параллельно соединенных трубопроводов
- •29.Расчет сложных трубопроводов
- •31. Гидравлический удар. Формула н.Е. Жуковского
- •33. Устройство и принцип действия центробежного насоса.
- •34. Напор, подача, кпд, мощность центробежного насоса.
- •35.Характеристика центробежного насоса.
- •38. Регулирование подачи центробежных насосов.
- •37. Помпаж
- •39. Параллельная работа центробежных насосов.
- •40. Последовательная работа центробежных насосов.
29.Расчет сложных трубопроводов
Значительное количество реальных гидравлических систем имеет более одной трубы с разветвлениями, путевой раздачей, набором питателей и т.д. Это требует знания методики решения таких задач.
Прежде всего следует помнить, что:
1. Базовыми уравнениями для расчета сложного трубопровода являются уравнение Бернулли и уравнение сплошности.
2. Количество уравнений будет определяться количеством неизвестных.
В качестве примера рассмотрим классическую задачу о 3-х резервуарах. Расчетная схема приведена ниже.
Как видно из рисунка, резервуары находятся на разной высоте. В связи с этим, из 1 резервуара вода будет вытекать, в 3 – перетекать. Для дальнейшего решения важно знать направление движения воды по второй трубе. Куда будет течь вода, будет зависеть от соотношения напоров во 2-м резервуаре и узле А. Если до начала решения это не известно, то можно попытаться решить задачу расчета простого трубопровода, считая, что труба 2 закрыта. Если напор в узле А окажется выше напора во 2-м резервуаре, то вода будет перетекать в бак 2. Если меньше – наоборот.
Второй способ будет ясен по ходу решения, т.к. одним из этапов решения является определение напора в узле А. В этом случае просто задаются направлением движения воды, а затем, при необходимости, корректируют. Если допущена ошибка, необходима корректировка с минимальными трудозатратами.
1 этап. Как уже отмечалось выше, решение начинается с уравнений Бернулли, которые записываются отдельно для каждой трубы. Как выбирать сечения и определять в них напор – объяснялось выше. Для простоты не будем расшифровывать напор в узле А, просто написав НА.
1 трубопровод
2 трубопровод.
3 трубопровод.
(Обратите
внимание, что слева от знака равенства
стоит напор в узле. Это связано с тем,
что жидкость движется из узла А к 3
сечению – резервуару 3. А это значит,
что напор в узле А должен быть больше
напора в 3 резервуаре на величину потерь
напора в трубопроводе.)
Когда у нас есть основные уравнения – давайте посчитаем неизвестные. Нам не известны расходы или скорости в 1, 2, 3 трубопроводах и напор в узле А. Давления, координаты сечений в таких задачах обычно известны. Т.к. 4 неизвестных, то необходимо добавить еще одно уравнение. Им будет закон сохранения массы. За этим названием скрывается обычный баланс масс: сколько воды вытекает из 1 и 2 резервуаров, столько и поступает в 3 резервуар.
Q1 + Q2 = Q3
2 этап. Это уже знакомая Вам процедура преобразования уравнений Бернулли за счет их упрощения. Так, в этой задаче в выбранных сечениях скорости будут равны «0», т.к. резервуары открытые, то давления на поверхности также равны «0». В других задачах преобразования могут быть несколько иными.
3 этап. А сейчас давайте сгруппируем члены этих уравнений следующим образом. Справа оставим напор в узле, а все остальное перенесем в левую часть. Получим следующую систему уравнений:
Q1 + Q2 = Q3
4 этап. Задаваясь различными расходами в трубопроводах, найдем значения напора в узле А в каждом из уравнений. Если бы мы знали расходы в трубопроводах и подставили их точные значения, то во всех трех уравнениях мы получили бы одинаковые напоры, т к напор в узле не может быть одновременно разным в зависимости от того, со стороны какой из труб мы на него будем смотреть. Но, т.к. расходы нам не известны, то мы с вами будем просто перебирать различные расходы и получать соответствующие им напора НА. Это удобно делать в виде таблицы.
- Разумеется, цифры стоят только для примера. Вы должны попытаться реально оценить расходы и подставить те значения расходов, которые будут наиболее правдоподобны в Вашем случае.
- Напор НА получается из решения соответствующих уравнений Бернулли при подстановке выбранного расхода.)
- Как находить потери напора, Вы должны уже знать из предыдущих разделов.
30.Трубопроводы с насосной подачей жидкости. |
|
В машиностроении основным способом подачи жидкости является принудительная ее подача насосом. Рассмотрим совместную работу насоса с трубопроводом и принцип расчета таких систем. Трубопровод с насосной подачей может быть разомкнутым, когда жидкость перекачивается из одной емкости в другую или замкнутым, в котором циркулирует одно и то же количество жидкости.
Составим уравнение Бернулли для потока жидкости во всасывающем трубопроводе, т.е. для сечений 0-0 и 1-1:
Данное уравнение является основным для расчета всасывающих трубопроводов. Оно показывает, что процесс всасывания, т.е. подъем жидкости на высоту z1, сообщение ей кинетической энергии и преодоление всех гидравлических сопротивлений происходит за счет использования (с помощью насоса) давления p0. Так как это давление обычно бывает весьма ограниченным, то расходовать его надо так, чтобы перед входом в насос остался некоторый запас давления p1, необходимый для его нормальной бескавитационной работы. Уравнение Бернулли для движения жидкости по напорному трубопроводу, т.е. для сечений 2-2 и 3-3:
Левая часть уравнения представляет собой энергию жидкости на выходе из насоса, отнесенную к единице веса. Аналогичная энергия перед входом в насос может быть вычислена из уравнения всасывающего трубопровода
Найдем приращение энергии жидкости в насосе, т.е. определим ту энергию, которую приобретает, проходя через насос, каждая единица веса жидкости. Эта энергия, сообщаемая жидкости насосом, называется напором, создаваемым насосом, и обозначается Hнас. Она равна
или
Сравнения полученной формулы с зависимостью для определения потребного напора позволяет сформулировать правило: при установившемся течении жидкости в трубопроводе насос развивает напор, равный потребному
На этом правиле основывается метод расчета трубопроводов, питаемых насосом, заключающийся в определении точки пересечения характеристики насоса (зависимости напора, создаваемого насосом, от его подачи) и кривой потребного напора трубопровода. Эта точка получила название рабочей точки. Для замкнутого трубопровода (рис.5.3.1, б) геометрическая высота подъема жидкости равна нулю (z=0), следовательно, при равенстве скоростей на входе и выходе из насоса (V1=V2)
т.е. между потребным напором и напором, создаваемым насосом, справедливо то же равенство. Замкнутый трубопровод обязательно должен иметь расширительный, или компенсационный бачок, соединенный с одним из сечений трубопровода, чаще всего со стороны всасывания насоса, где давление имеет минимальное значение. Он служит для компенсации утечек и предотвращения колебания давления в системе, связанных с изменением температуры. При наличии расширительного бачка, присоединенного в соответствии с рис.5.3.1, б, давление на входе в насос определится из выражения:
По величине p1 можно подсчитать давление в любом сечении замкнутого трубопровода. Если давление в бачке изменить на некоторую величину, то во всех точках данной системы давление изменится на ту же самую величину. |
