Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
БИОМЕТРИЯ ОТВЕТЫ К ЭКЗАМЕНУ.docx
Скачиваний:
4
Добавлен:
01.03.2025
Размер:
79.85 Кб
Скачать

9. Статистические оценки параметров распределения. Генеральная и выборочная средние. Групповая и общая средние.

Пусть требуется изучить некоторый количественный признак генеральной совокупности. Допустим, что из теоретических соображений удалось установить, какое именно распределение имеет признак и необходимо оценить параметры, которыми оно определяется. Например, если изучаемый признак распределен в генеральной совокупности нормально, то нужно оценить математическое ожидание и среднее квадратическое отклонение; если признак имеет распределение Пуассона – то необходимо оценить параметр λ.

Для того чтобы статистические оценки давали корректные приближения оцениваемых параметров, они должны удовлетворять некоторым требованиям, среди которых важнейшими являются требования несмещенности и состоятельности оценки. Таким образом, использование статистической оценки, математическое ожидание которой не равно оцениваемому параметру, привело бы к систематическим (одного знака) ошибкам.

Эффективной называют статистическую оценку, которая, при заданном объеме выборки n, имеет наименьшую возможную дисперсию.

При рассмотрении выборок большого объема к статистическим оценкам предъявляется требование состоятельности.

Состоятельной называется статистическая оценка, которая при n→∞ стремится по вероятности к оцениваемому параметру. Например, если дисперсия несмещенной оценки при n→∞ стремится к нулю, то такая оценка оказывается и состоятельной.

Основными параметрами генеральной совокупности являются математическое ожидание (генеральная средняя) М(Х) и среднее квадратическое отклонение s. Это постоянные величины, которые можно оценить по выборочным данным. Оценка генерального параметра, выражаемая одним числом, называется точечной.

Точечной оценкой генеральной средней является выборочное среднее .

Выборочное среднее является основной характеристикой положения, показывает центр распределения совокупности, позволяет охарактеризовать исследуемую совокупность одним числом, проследить тенденцию развития, сравнить различные совокупности (выборочное среднее является той точкой, сумма отклонений наблюдений от которой равна 0).

Для оценки степени разброса (отклонения) какого-то показателя от его среднего значения, наряду с максимальным и минимальным значениями, используются понятия дисперсии и стандартного отклонения.

Дисперсия выборки или выборочная дисперсия (от английского variance) – это мера изменчивости переменной.

Выборочной дисперсией Dв называют среднее арифметическое квадратов отклонения наблюдаемых значений признака от их среднего значения .

Если все значения x1, x2,..., xn признака выборки объема n различны, то:

Групповой средней называют среднее арифметическое значений признака, принадлежащих группе

Групповой дисперсией называют дисперсию значений признака, принадлежащих группе, относительно групповой средней

10. Генеральная и выборочная дисперсия. Групповая, внутригрупповая, межгрупповая и общая дисперсии.

для того чтобы охарактизировать рассеяние значений количественного признака Х гене-ральной совокупности вокруг своего среднего значения вводят сводную характеристику –генеральную дипресию. Генеральной дипресией называют среднее арифметическое квадратов отклонения значений признака генеральной совокупности от их среднего значения . Если все значения признака генеральной совокупности объема N различны,то если же значения при-знака имеет соответственно частоты причем + то т.е. генеральная дис-персия есть средняя взвешенная квадратов от-клонения с весами, равными соответствующим частотам. Кроме дисперсии для характеристики рассеяния значений признака генеральной совокупности вокруг своего среднего значения пользуются сводной характеристикой – средним квадратическим отклонением. Генеральным средним квадратическим отклонением (стандар-том) называют квадратный корень из генераль-ной дипресии:

Выборочная дисперсия

Для того чтобы охарактизировать рассеяние наблюдаемых значений количественного при-знака выборки вокруг своего среднего значения вводят сводную характеристику –выборочную дисперсию. Выборочной дисперсией называ-ют среднее арифметическое квадратов отклоне-ния наблюдаемых значений признака от их сред-него значения если все значения признака выборки объема nразличны, то если же значения признака имеет соответственно час-тоты причем т.е. выборочная дис-персия есть средняя взвешаная квадратов откло-нения с весами , равными соответствующим частотам. Кроме дисперсии для характеристики рассеяния значений признака выборочной сово-купности вокруг своего среднего значения поль-зуются сводной характеристикой – средним квадратическим отклонением. Выборочным средним квадратическим отклонением (стандар-том) называют квадратный корень из выбороч-ной дисперсии

Общая дисперсия оценивает колеблемость признака всех единиц совокупности без исключения:

– средняя в целом по совокупности;

f – частота в целом по совокупности.

Она отражает влияние всех причин и факторов, которые действуют на вариацию.

Для характеристики вариации признаков по группе рассчитывают групповую дисперсию. Она рассчитывает колеблемость признака в каждой отдельной группе и представляет собой средний квадрат отклонений индивидуальных значений признаков от средней по каждой отдельно взятой группе:

Межгрупповая дисперсия (дисперсия групповых средних) характеризует вариацию результативного признака под влиянием только одного фактора, положенного в равновесие группировки