
- •1. Меры выравнивания распределения напряжения в изоляционных конструкциях.
- •2. Изоляция воздушных линий электропередач. Выбор изоляции вл. Типы линейных изоляторов.
- •3. Изоляция подстанций. Опорные изоляторы.
- •5. Изоляция силовых кабелей. Испытания изоляции кабелей.
- •6. Изоляция высоковольтных конденсаторов. Испытания изоляции конденсаторов.
- •7. Изоляция вращающихся машин. Испытания изоляции.
- •8. Меры борьбы с короной в эм.
- •9. Изоляция силовых трансформаторов. Испытания изоляции эм.
- •10. Волновые процессы в обмотках трансформаторов при приходе грозовых волн. Перенапряжения на главной и продольной изоляции.
- •11. Меры борьбы с грозовыми перенапряжениями в трансформаторах.
- •12. Волновые процессы в автотрансформаторах. Волновые процессы в трехфазных трансформаторах.
- •13. Назначение и классификация методов испытания изоляции.
- •15. Испытания изоляции повышенным напряжением
- •1. Испытания грозовыми импульсами:
- •2. Испытания коммутационными импульсами:
- •3. Испытание напряжением промышленной частоты.
- •16. Получение высокого переменного напряжения в испытательных лабораториях. Испытательные трансформаторы, каскады трансформаторов.
- •17. Получение высокого импульсного напряжения. Гин. Получение стандартной волны от гин.
- •18. Измерение высокого напряжения с помощью шаровых разрядников.
- •19. Измерение высокого напряжения при помощи делителей напряжения.
- •20. Разряд молнии. Основные параметры молнии.
- •21. Стержневые молниеотводы. Их зоны защиты.
- •22. Тросовые молниеотводы. Их зоны защиты.
- •23. Заземления в электроустановках. Стационарное и импульсное сопротивления заземления. Конструкции заземлителей.
- •24. Защитные промежутки. Трубчатые разрядники. Их назначение, конструкции.
- •25. Вентильные разрядники. Их назначение, конструкция.
- •26 Нелинейные ограничители перенапряжений. Их назначение, конструкция.
- •27. Грозоупорность линий электропередач на деревянных и металлических опорах без тросов.
- •28. Грозоупорность линий электропередач с тросами.
- •29. Грозоупорность линий электропередач 6-35 кВ.
- •30. Методика оценки грозоупорности подстанций.
- •31. Зоны защиты вентильных разрядников.
- •32. Роль защитного подхода в схемах грозозащиты подстанций.
- •33. Грозоупорность вращающихся машин, подключенных непосредственно к вл.
- •34. Грозоупорность вращающихся машин, подключенных к вл через трансформаторы.
- •35. Сеть с изолированной нейтралью. Смещение нейтрали в сетях с изолированной нейтралью в нормальном режиме и в режиме однофазного замыкания на землю.
- •36. Сеть с компенсацией тока замыкания на землю. Резонансное смещение нейтрали.
- •37. Сеть с резистивным заземлением нейтрали.
- •38. Повышение напряжения при однофазных к.З. В сетях с глухозаземленной нейтралью.
- •40.Дуговые переапряжения в сетях с изолированной нейтралью (Теории Петерса и Слепяна, Петерсена, Белякова)
- •41. Дуговые перенапряжения в сетях с компенсированной нейтралью (с дгр)Перенапряжения при одз в сети с компенсированной нейтралью
- •42.Дуговые перенапряжения в сетях с резистивно заземленной нейтралью
- •43. Перенапряжения при одностороннем симметричном включении вл. Влияние мощности системы и коронирования проводов на перенапряжения при одностороннем включении
- •4 4. Перенапряжения при одностороннем симметричном включении вл. Влияние мощности шунтирующих реакторов на перенапряжения при одностороннем включении
- •Влияние шунтирующих реакторов на распределение напряжения вдоль линии
- •45.Общая характеристика мер защиты от коммутационных перенапряжений
- •46. Общая характеристика перенапряжений, возникающих в процессе ликвидации аварий, вызванных кз на вл
- •47.Коммутационные перенапряжения при отключениях вл. Меры ограничения перенапряжений
- •48.Коммутационные перенапряжения при плановых включениях и включениях тапв. Меры ограничения
- •49. Перенапряжения при отключениях индуктивностей. Меры ограничения.
20. Разряд молнии. Основные параметры молнии.
Молния представляет собой электрический разряд между объемным зарядом в облаке и землей (наземные разряды) или между двумя заряженными областями (межоблачные и внутриоблачные разряды). Молнии предшествует процесс разделения и накопления электрических зарядов в облаках, происходящий из-за мощных восходящих воздушных потоков и интенсивной конденсации в них водяных паров. Восходящие потоки возникают в результате нагрева приземных слоев воздуха, который становится легче более холодных слоев. В восходящем потоке воздух охлаждается, и на определенной высоте его температура достигает значения, при котором образуется насыщенный водяной пар. Конденсация сопровождается выделением тепла, что стимулирует дальнейшее продвижение воздушного потока вверх до высоты примерно 6 - 8 км с образованием мощного кучевого облака.
Первоначальным пусковым механизмом электризации грозового облака считается наличие в атмосфере электрического поля хорошей погоды из-за заряженности конденсатора земля - ионосфера (рис.12.2) с напряженностью около 100 В/м.
Капельки воды в облаке в электрическом поле атмосферы становятся электрическими диполями, у которых положительный заряд находится внизу. Перемещающиеся вниз капельки отталкивают положительные ионы и захватывают отрицательные, приобретая избыточный отрицательный заряд; аналогично движущиеся вверх капельки становятся положительными. Движущиеся вверх капельки замерзают при температуре существенно ниже 0оС (при резком переохлаждении замерзание происходит при температуре около -18оС). Капелька при резком замерзании лопается, распадаясь на мелкие льдинки, которые уносят положительный заряд на высоту 10 - 12 км. В итоге грозовое облако представляет собой диполь с зарядом в среднем 25 Кл. Центр отрицательного заряда расположен на высоте около 5 км над землей (рис. 12.3), и большая часть наземных молний (около 90%) переносит на землю отрицательный заряд, подзаряжая конденсатор земля - ионосфера. В средних широтах Земли разряды на землю составляют 30..40% всех молний, остальные разряды - межоблачные и внутриоблачные. Перед разрядом молнии потенциал центральной части отрицательного заряда составляет 50..100 МВ и средняя напряженность поля под облаком невелика, всего 100..200 В/см, однако вблизи центра заряда напряженность поля достигает 20..24 кВ/см, что достаточно для начала ионизации. Развитие наземного разряда молнии, как правило, начинается от облака, ответвления канала при этом направлены вниз. Восходящие молнии наблюдаются только на очень высоких объектах или в горной местности.
Основные параметры молнии:
Интенсивность грозовой деятельности
Частота ударов молнии в наземные объекты
Амплитуда тока молнии
Крутизна тока молнии
Высота ориентировки молнии
Эквивалентное сопротивление канала молнии
Степень опасности
удара молнии определяется прежде всего
максимальным значением тока Iм
в канале. Величина падения напряжения
на индуктивных элементах и величины
индуктированных перенапряжений зависят
от скорости нарастания тока молнии
на
фронте волны. Это наиболее важные
параметры тока; кроме того, интеграл
определяет
нагрев металлических частей, а оплавление
металлических частей дугой зависит от
величины перенесенного заряда. Обнаружено,
что амплитуда тока главного разряда
практически не зависит от сопротивления
заземления в месте удара, так что молнию
можно считать источником тока.
В приближенных расчетах используют усредненные распределения Iм и a без учета их различия в первом и последующем импульсах:
-
вероятность того, что амплитуда тока в
ударе молнии превысит заданное значение
Iм
в килоамперах (этот подход практически
удобнее, чем обычное определение
вероятности как доли всех реализаций
при значениях случайной величины,
меньших заданной);
-
вероятность превышения крутизной тока
заданного значения a,
кА/мкс.
Между амплитудой и крутизной тока существует слабая положительная связь, однако при расчетах их обычно полагают статистически независимыми случайными величинами. В горных районах при тех же вероятностях величины Iм и a примерно вдвое меньше.
Для прогноза
количества ударов молнии в защищаемый
объект используют метеорологическую
характеристику интенсивности грозовой
деятельности - число часов с грозой в
год в данной местности TГ
- и среднее число ударов молнии в 1 км2
поверхности земли за 100 грозочасов,
равное
В
Иркутске TГ=30
ч; с увеличением географической широты
места TГ
уменьшается.
Возвышенные объекты стягивают на себя удары молний с площади большей, чем их собственная площадь. Число прямых ударов в здания высотой H> или в открытые распределительные устройства с молниеотводами высотой H в течение года вычисляется с увеличением горизонтальных размеров объекта A и B (в метрах) на 3.5H во все стороны:
,
сомножитель 10-6 производит перевод квадратных метров в квадратные километры для согласования с размерностью N1.
Для
линий электропередачи используют
удельный показатель
,
равный числу прямых ударов молнии на
100 км длины за 100 грозочасов. Считается,
что линия собирает разряды с расстояния
3 hср
в обе стороны:
.
Средняя высота подвеса провода hср, м, определяется через высоту подвеса троса или верхнего провода на опоре hоп, м, и стрелу провеса провода f, м, следующим образом:
.
Если линия имеет
длину l,
км, и расположена в местности с числом
грозочасов в год TГ,
то ожидаемое число прямых ударов молнии
в линию за год
можно
оценить по следующей формуле:
.