
- •1.Отличие про- и эукариотческой клетки.
- •2.Вирусы-внеклеточные формы жизни. Их строение
- •3.Жизненые циклы вирусов.
- •4. Передача наследственной информации у бактерий. F-фактор. Конъюгация, трансформация, трансдукция
- •5.Строение эукариотической клетки.
- •6.Строение и функции органелл клетки
- •7.Строение клеточной мембраны и ее функции
- •8. Жиры и углеводы. Их строение и функции
- •10.Белки как ферменты. Принцип работы ферментов.
- •11.Нуклеиновые кислоты. Строение и функции днк. Репликация днк.
- •12 Генетический код и его свойства
- •13. Нуклеиновые кислоты. Виды рнк и их функции. Строение тРнк
- •14 Биосинтез белка. Транскрипция и трансляция.
- •15 Строение и функции атф
- •16. Клеточное дыхание. Анаэробная и аэробная фаза
- •17. Фотосинтез. Световая и темновая фазы.
- •18. Деление клеток. Митоз и мейоз….
- •19 Организация генетического материала в клетке. Строение хромосомы. Нуклеосомы.
- •20. Гибридологический метод как основа генетического анализа
- •21. 1 И 2 законы г.Менделя
- •22. Закон независимого наследования признаков и его цитологические основы.
- •23. Наследование при взаимодействии генов. Комплементарность
- •24. Наследование при взаимодействии генов. Эпистаз
- •25.Взаимодействие генов полимерия. Ее виды
- •26. Хромосомная форма определения пола. Гомо- и гетерогаметный пол.
- •27. Балансовая теория определения пола.
- •28. Наследование признаков, сцепленных с полом.
- •29. Генетическое доказательство кроссинговера.
- •30. Генетические карты. Принципы построения генетических карт
- •31.Генетическое равновесии в популяциях. Закон Харди-Вейнберга. Значение мутаций, миграция, динамики численности, дрейфа генов.
- •32. Строение половых клеток.
- •33.Гаметогенез.
- •34. Оплодотворение, акросомальная и кортикальная реакция. Быстрый и медленный блок полиспермии.
- •35. Типы дробления их взаимосвязь с типом яйцеклетки.
- •36. Гаструляция, типы клеточных движений, способы закладки зародышевых листков.
- •38. Молекулярные машины. Принцип работы атф-азы. Протонный насос
7.Строение клеточной мембраны и ее функции
Кле́точная мембра́на (или цитолемма, или плазмалемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды.
Строение и функции клеточных мембран. 1.Барьерная функция выражается в том, что мембрана при помощи соответствующих механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии. При этом мембрана принимает участие в механизмах электрогенеза. К ним относятся механизмы создания потенциала покоя, генерация потенциала действия, механизмы распространения биоэлектрических импульсов по однородной и неоднородной возбудимым структурам. 2.Регуляторная функция клеточной мембраны заключается в тонкой регуляции внутриклеточного содержимого и внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ, что приводит к изменению активности ферментных систем мембраны и запуску механизмов вторичных «месенджеров» («посредников»). 3.Преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах). 4.Высвобождение нейромедиаторов в синаптических окончаниях.
8. Жиры и углеводы. Их строение и функции
Углеводы — органические соединения, состоящие из углерода, водорода и кислорода.Строение углеводов. Простые углеводы — глюкоза, фруктоза. Наличие глюкозы в составе фруктов, овощей, крови человека, фруктозы — в составе фруктов и меда. Сложные углеводы — макромолекулы, состоящие из остатков молекул простых углеводов. Примеры сложных углеводов: целлюлоза (клетчатка), крахмал, гликоген — животный крахмал, образующийся в печени. Образование молекул целлюлозы, крахмала и гликогена из остатков молекул глюкозы. Наличие в одной молекуле крахмала от нескольких сотен до нескольких тысяч остатков молекул глюкозы, а в составе молекулы целлюлозы — свыше 10000 звеньев. Прочность и нерастворимость молекул сложных углеводов.Роль углеводов в организме:1 запасающая — способность сложных углеводов накапливаться, образуя запас питательных веществ. Примеры: накопление крахмала в клетках клубней картофеля, корневищ многих растений; образование из молекул глюкозы и накопление в клетках печени гликогена; 2энергетическая — способность молекул углеводов окисляться до углекислого газа и воды с освобождением 17,6 кДж энергии при окислении 1 г углеводов;3 структурная. Углеводы — составная часть различных частей и органоидов клетки. Пример: наличие клеточной оболочки, состоящей из целлюлозы и играющей роль наружного скелета у растений. Жиры — органические вещества. Гидрофоб-ность (нерастворимость в воде) — главное свойство жиров. Содержание жиров в клетках в среднем от 5 до 15% , в клетках жировой ткани — до 90% .Роль жиров в организме: 1энергетическая — способность окисляться до углекислого газа и воды с освобождением энергии (38,9 кДж энергии при окислении 1 г жиров); 2структурная. Жиры входят в состав плазматической мембраны; 3запасающая — способность жиров накапливаться в подкожной жировой клетчатке у животных, в семенах некоторых растений (подсолнечник, кукуруза и др.); 4терморегуляционная: защита организма от охлаждения у ряда животных — тюленей, моржей, китов, медведей и др.; 5защитная: у ряда животных защита организма от механических повреждений, предохранение от смачивания водой перьев или волосяного покрова.
9.строение белков. Первичная, вторичная, третичная структуры. основные функции. Денатурация и ренатурация.
Молекулы белков имеют большие размеры, поэтому их называют макромолекулами. Кроме углерода, кислорода, водорода и азота, в состав белков могут входить сера, фосфор и железо. Белки отличаются друг от друга числом (от ста до нескольких тысяч), составом и последовательностью мономеров. Мономерами белков являются аминокислоты. Бесконечное разнообразие белков создается за счет различного сочетания всего 20 аминокислот. Каждая аминокислота имеет свое название, особое строение и свойства. Первичная структура белка – последовательность чередования аминокислотных остатков (все связи ковалентные, прочные). Вторичная структура – форма полипептидной цепи в пространстве. Белковая цепь закручена в спираль (за счет множества водородных связей. Третичная структура – реальная трехмерная конфигурация, которую принимает в пространстве закрученная спираль (за счет гидрофобных связей), у некоторых белков – S–S-связи (бисульфидные связи). ФУНКЦИИ: 1. Строительный материал – белки участвуют в образовании оболочки клетки, органоидов и мембран клетки. Из белков построены кровеносные сосуды, сухожилия, волосы. 2. Каталитическая роль – все клеточные катализаторы – белки (активные центры фермента). Структура активного центра фермента и структура субстрата точно соответствуют друг другу, как ключ и замок. 3. Двигательная функция – сократительные белки вызывают всякое движение. 4. Транспортная функция – белок крови гемоглобин присоединяет кислород и разносит его по всем тканям. 5. Защитная роль – выработка белковых тел и антител для обезвреживания чужеродных веществ. 6. Энергетическая функция – 1 г белка эквивалентен 17,6 кДж. Под денатурацией понимают утрату трехмерной конформации, присущей данной белковой молекуле. Это изменение может носить временный или постоянный характер, но и в том, и в другом случае аминокислотная последовательность белка остается неизменной. При денатурации молекула развертывается и теряет способность выполнять свою обычную биологическую функцию. Вызывать денатурацию белков могут разнообразные факторы, перечисленные ниже. Иногда денатурированный белок в подходящих условиях вновь спонтанно приобретает свою нативную структуру. Этот процесс называется рена-турацией. Ренатурация убедительно показывает, что третичная структура белка полностью определяется его первичной структурой и что сборка биологических объектов может осуществляться на основе немногих общих принципов.