
- •1.Отличие про- и эукариотческой клетки.
- •2.Вирусы-внеклеточные формы жизни. Их строение
- •3.Жизненые циклы вирусов.
- •4. Передача наследственной информации у бактерий. F-фактор. Конъюгация, трансформация, трансдукция
- •5.Строение эукариотической клетки.
- •6.Строение и функции органелл клетки
- •7.Строение клеточной мембраны и ее функции
- •8. Жиры и углеводы. Их строение и функции
- •10.Белки как ферменты. Принцип работы ферментов.
- •11.Нуклеиновые кислоты. Строение и функции днк. Репликация днк.
- •12 Генетический код и его свойства
- •13. Нуклеиновые кислоты. Виды рнк и их функции. Строение тРнк
- •14 Биосинтез белка. Транскрипция и трансляция.
- •15 Строение и функции атф
- •16. Клеточное дыхание. Анаэробная и аэробная фаза
- •17. Фотосинтез. Световая и темновая фазы.
- •18. Деление клеток. Митоз и мейоз….
- •19 Организация генетического материала в клетке. Строение хромосомы. Нуклеосомы.
- •20. Гибридологический метод как основа генетического анализа
- •21. 1 И 2 законы г.Менделя
- •22. Закон независимого наследования признаков и его цитологические основы.
- •23. Наследование при взаимодействии генов. Комплементарность
- •24. Наследование при взаимодействии генов. Эпистаз
- •25.Взаимодействие генов полимерия. Ее виды
- •26. Хромосомная форма определения пола. Гомо- и гетерогаметный пол.
- •27. Балансовая теория определения пола.
- •28. Наследование признаков, сцепленных с полом.
- •29. Генетическое доказательство кроссинговера.
- •30. Генетические карты. Принципы построения генетических карт
- •31.Генетическое равновесии в популяциях. Закон Харди-Вейнберга. Значение мутаций, миграция, динамики численности, дрейфа генов.
- •32. Строение половых клеток.
- •33.Гаметогенез.
- •34. Оплодотворение, акросомальная и кортикальная реакция. Быстрый и медленный блок полиспермии.
- •35. Типы дробления их взаимосвязь с типом яйцеклетки.
- •36. Гаструляция, типы клеточных движений, способы закладки зародышевых листков.
- •38. Молекулярные машины. Принцип работы атф-азы. Протонный насос
20. Гибридологический метод как основа генетического анализа
Основу генетического анализа составляет гибридологический анализ, основанный на анализе наследования признаков при скрещиваниях.
Гибридологический анализ, основы которого разработал основатель современной генетики Г. Мендель, основан на следующих принципах.
1. Использование в качестве исходных особей (родителей), форм, не дающих расщепления при скрещивании, т.е. константных форм.
2. Анализ наследования отдельных пар альтернативных признаков, то есть признаков, представленных двумя взаимоисключающими вариантами.
3. Количественный учет форм, выщепляющихся в ходе последовательных скрещиваний и использование математических методов при обработке результатов.
4. Индивидуальный анализ потомства от каждой родительской особи.
5. На основании результатов скрещивания составляется и анализируется схема скрещиваний.
Гибридологическому анализу обычно предшествует селекционный метод. С его помощью осуществляют подбор или создание исходного материала, подвергающегося дальнейшему анализу (например, Г. Мендель, который по существу является основопо-ложником генетического анализа, начинал свою работу с получения константных – гомозиготных – форм гороха путём самоопыле¬ния);
Однако в некоторых случаях метод прямого гибридологического анализа оказывается неприменим. Например, при изучении наследования признаков у человека необходимо учитывать ряд обстоятельств: невозможность планирования скрещиваний, низкая плодовитость, длительный период полового созревания. Поэтому кроме гибридологического анализа, в генетике используется множество других методов.
Гибридологический метод — это анализ характера наследования признаков с помощью системы скрещиваний, суть которых состоит в получении гибридов и анализе их потомков в ряду поколений (анализ расщепления). Классическая схема гибридологического анализа включает в себя подбор материала для получения гибридов, скрещиваний между собой и анализа следующих поколений.
Фактически, суть гибридологического метода можно выразить следующими основными постулатами:
1. Родительские особи должны отличаться одним или несколькими признаками и, кроме того, должны быть чистыми линиями по изучаемым признакам, т.е. быть гомозиготами.
2. Должен осуществляться анализ потомков от каждой родительской пары в каждом поколении.
3. Закономерности результатов скрещиваний должны анализироваться статистически.
Кроме гибридологического метода Г.Мендель предложил систему записей скрещивания, которой пользуются и по сей день ученые всего мира. Система обозначений следующая:
Р — обозначает родителей (от латинского слова Parenta — родители);
F — с цифровым индексом обозначает последующие поколения (от лат. Filii — дети);
«х» — скрещивание особей, женский организм (записывается первым) обозначается символом «зеркало Венеры» мужской организм — символом «щит и копье Марса» ( СГ);
задатки (гены) обозначаются буквами латинского алфавита: доминантные признаки — прописными, рецессивные — строчными.
В настоящее время гибридологический анализ является частью генетического анализа, позволяющего определить характер наследования изучаемого признака, выяснить локализацию генов.