Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
i_vse_vse_vse.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.66 Mб
Скачать

10. Роль прикладних економіко-математичних досліджень.

Можна виокремити щонайменше чотири функції щодо застосування математичних методів і моделей у вирішенні практичних проблем.

1. Удосконалення системи економічної інформації. Математичні методи та моделі дозволяють упорядковувати систему економічної інформації, виявляти недоліки в наявній інформації і виробляти вимоги до підготовки нової інформації чи її коригування.

2. Інтенсифікація і підвищення точності економічних розрахунків. Формалізація економічних задач і застосування комп’ютерів багаторазово прискорюють типові, масові розрахунки, підвищують точність і скорочують трудомісткість, дозволяють проводити багатоваріантні економічні дослідження та обґрунтування складних заходів, недосяжні за панування «ручної» технології.

3. Поглиблення кількісного аналізу економічних проблем. Завдяки застосуванню економіко-математичного моделювання значно підсилюються можливості конкретного кількісного аналізу, вивчення багатьох чинників, які впливають на економічні процеси, кількісна оцінка наслідків змін умов розвитку економічних об’єктів тощо.

4. Розв’язання принципово нових економічних задач. За допомогою математичного моделювання вдається розв’язувати такі економічні задачі, які іншими засобами розв’язати практично неможливо, наприклад, знаходження оптимального варіанта народногосподарського плану, імітація народногосподарських заходів, автоматизація контролю за функціонуванням складних економічних об’єктів.

11. Взаємозв’язкок валідації, верифікації та забезпечення довіри до моделі.

Перевірку можна умовно розділити на два етапи: перевірка правильності створення концептуальної моделі, тобто задуму – валідація; перевірка правильності її реалізації – верифікація. Під час перевірки достовірності потрібно відповісти на запитання про відповідність моделі модельованій системі, тобто визначити, наскільки ізоморфні система та модель.

На етапі верифікації розглядають, чи правильно перетворено концептуальні модель на комп’ютерну програму, тобто виконують налагодження програми моделювання.

Валідація – це процес, який дає змогу встановити чи є модель (а не комп’ютерна програма) точним відображенням системи для конкретних цілей дослідження.

12. Постановка задачі економіко-математичного моделювання. Сутність понять: «параметри», «змінні», «цільова функція», «система обмежень».

Параметр — величина, значения которой служат для различения групп элементов некоторого множества между собой.

Переменная — это величина, характеризующаяся множеством значений, которое она может принимать

Функцію називають цільовою функцією, або функцією мети. Для економічної системи це є функція ефективності її функціонування та розвитку, оскільки значення F відображує ступінь досягнення певної мети.

У загальному вигляді задача економіко-математичного моделювання формулюється так:

Знайти такі значення керованих змінних xj, щоб цільова функція набувала екстремального (максимального чи мінімального значення). Система називається системою обмежень, або системою умов задачі. Вона описує внутрішні технологічні та економічні процеси функціонування й розвитку виробничо-економіч­ної системи, а також процеси зовнішнього середовища, які впливають на результат діяльності системи.

13. Постановка задачі економіко-математичного моделювання. Сутність понять: «оптимальний план», «допустимий план», «область існування планів».

Подамо схематично довільну економічну систему у такому вигляді (рис. 2.1):

Параметри сk (k = 1, 2, ..., l) є кількісними характеристиками системи. Наприклад, якщо йдеться про таку економічну систему, як сільськогосподарське підприємство, то його параметрами є наявні ресурси, рівень урожайності сільськогосподарських культур, продуктивності тварин, норми витрат ресурсів, ціни та собівартість проміжної і кінцевої продукції, норми податків, проценти за кредит, ціни на куповані ресурси тощо.

Частина параметрів сk для певної системи може бути сталими величинами, наприклад, норми висіву насіння сільськогосподарських культур, норми споживання тваринами кормів тощо, а частина — змінними, тобто залежатиме від певних умов, як, скажімо, урожайність сільськогосподарських культур, собівартість продукції, реалізаційні ціни на рослинницьку й тваринницьку продукцію.

Змінні величини бувають незалежними чи залежними, дискрет­ними чи неперервними, детермінованими або випадковими. Наприклад, залежною змінною є собівартість продукції, незалежною від процесу функціонування підприємства величиною є початковий розмір статутного фонду, дискретною – кількість корів, неперервною – площа посіву озимої пшениці, детермінованою – норма висіву насіння кукурудзи на гектар, випадковою – кількість телят, які народяться у плановому періоді.

Вхідні змінні економічної системи бувають двох видів: керовані xj (j=1,2,...,n), значення яких можна змінювати в деякому інтервалі; і некеровані змінні yi (і=1,2, ..., m), значення яких не залежать від волі людей і визначаються зовнішнім середовищем. Наприклад, обсяг придбаного пального – керована, а температура повітря – некерована змінна.

У загальному вигляді задача економіко-математичного моделювання формулюється так:

Знайти такі значення керованих змінних xj, щоб цільова функція набувала екстремального (максимального чи мінімального значення).

Отже, потрібно відшукати значення

Можливості вибору xj завжди обмежені зовнішніми щодо системи умовами, параметрами виробничо-економічної системи тощо.

Ці процеси можна описати системою математичних рівностей та нерівностей виду:

Тут набір символів ( , =, ) означає, що для деяких значень поточного індексу і виконуються нерівності типу , для інших – рівності (=), а для решти – нерівності типу .

Ця система називається системою обмежень, або системою умов задачі. Вона описує внутрішні технологічні та економічні процеси функціонування й розвитку виробничо-економіч­ної системи, а також процеси зовнішнього середовища, які впливають на результат діяльності системи. Для економічних систем змінні xj мають бути невід’ємними:

. (2.4)

Залежності (2.2)-(2.4) утворюють економіко-математичну модель економічної системи. Розробляючи таку модель, слід дотримуватись певних правил:

1. Модель має адекватно описувати реальні технологічні та економічні процеси.

2. У моделі потрібно враховувати все істотне, суттєве в досліджуваному явищі чи процесі, нехтуючи всім другорядним, неістотним у ньому.

3. Модель має бути зрозумілою для користувача, зручною для реалізації на ЕОМ.

4. Необхідно, щоб множина змінних xj була не порожньою. З цією метою в економіко-математичних моделях за змоги слід уникати обмежень типу «=», а також суперечливих обмежень. Якщо система (2.3), (2.4) має єдиний розв’язок, то не існує набору різних планів, а отже, й задачі вибору оптимального з них.

Будь-який набір змінних x1, x2, ..., xn, що задовольняє умови (2.3) і (2.4), називають допустимим планом, або планом. Очевидно, що кожний допустимий план є відповідною стратегією економічної системи, програмою дій. Кожному допустимому плану відповідає певне значення цільової функції, яке обчислюється за формулою (2.2).

Сукупність усіх розв’язків системи обмежень (2.3) і (2.4), тобто множина всіх допустимих планів утворює область існування планів.

Розв’язком економіко – математичної моделі або допустимим планом називається набір значень невідомих, який задовольняє її системі обмежень. Модель має багато рішень або допустимих планів і серед них потрібно знайти єдине, яке задовольняє системі обмежень і цільовій функції.

Допустимий план, який задовольняє цільовій функції, називається оптимальним.

Оптимальний план є розв’яз­ком задачі економіко-математичного моделювання (2.2)—(2.4).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]