
- •Сутність поняття “модель”. Особливості математичної моделі
- •Сутність методології математичного моделювання. Узагальнена схема математичного моделювання
- •Особливості і принципи математичного моделювання
- •Поняття економіко-математичної моделі. Узагальнена схема процесу математичного моделювання економічних процесів.
- •Особливості процесу математичного моделювання економічних систем. Особливості економічних спостережень і вимірів.
- •Практичні завдання економіко-математичного моделювання. Роль математичних методів в економіці.
- •Охарактеризуйте основні етапи економіко-математичного моделювання. Етапи економіко-математичного моделювання
- •8 Основні засади щодо класифікації економіко-математичних моделей. Наведіть приклади та дайте відповідні пояснення.
- •9. Сутність аналітичного та комп’ютерного моделювання.
- •10. Роль прикладних економіко-математичних досліджень.
- •11. Взаємозв’язкок валідації, верифікації та забезпечення довіри до моделі.
- •12. Постановка задачі економіко-математичного моделювання. Сутність понять: «параметри», «змінні», «цільова функція», «система обмежень».
- •14. Предмет математичного програмування. Приклади економічних задач математичного програмування.
- •15. Багатокритеріальна оптимізація економічних систем. Навести відповідні формули.
- •16. Класифікація задач математичного програмування
- •17. Постановка транспортної задачі та методи її розвязання
- •18. Алгоритм розв’язання транспортної задачі методом потенціалів
- •20. Методи побудови першого опорного плану транспортної задачі: мінімальної вартості; апроксимації Фогеля
- •21. Економічна постановка та математична модель задачі лінійного програмування. Основні поняття задачі лінійного програмування
- •22. Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування. Навести відповідні формули.
- •24. Геометрична інтерпретація задач лінійного програмування. Властивості розв’язків задачі лінійного програмування Геометрична інтерпретація задачі лінійного програмування
- •25 Алгоритм графічного методу розв’язування задач лінійного програмування
- •27.Умова оптимальності розв’язку задачі лінійного програмування симплекс-методом. Алгоритм симплексного методу. Навести відповідні формули Оптимальний розв’язок. Критерій оптимальності плану
- •28 Метод штучного базису. Ознака оптимальності плану із штучним базисом. Навести відповідні формули Метод штучного базису (самостійна робота)
- •29 Алгоритм розв’язання розширеної задачі лінійного програмування. Навести відповідні формули
- •31. Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі. Навести відповідні формули
- •32. Економічна інтерпретація прямої задачі лінійного програмування. Економічний зміст двоїстої задачі й двоїстих оцінок
- •33. Перша теорема двоїстості, її економічна інтерпретація. Навести відповідні формули
- •35.Застосування теорем двоїстості в розв’язуванні задач лінійного програмування. Навести відповідні формули см вопр 33,34.
- •37. Аналіз розв’язків лінійних економіко-математичних моделей
- •Основні властивості розв’язків задачі лінійного програмування
- •38. Оцінка рентабельності продукції. Доцільність введення нової продукції. Навести відповідні формули
- •42.Цілочислове програмування. Приклади застосування цілочислових задач в плануванні й управлінні виробництвом. Навести відповідні формули.
- •43. Геометрична інтерпретація задачі цілочислового програмування
- •44.Загальна характеристика методів розв’язування задач цілочислового програмування
- •46. Методи відтинання. Метод Гоморі. Навести відповідні формули.
- •47. Комбінаторні методи. Метод гілок і меж. Навести відповідні формули.
- •48. Наближені методи розв’язання задачі цілочислового лінійного програмування. Метод вектора спаду.
- •49. Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- •50.Графічний метод розв’язування задач нелінійного програмування.
- •51. Основні труднощі розв’язування задач нелінійного програмування
- •52. Алгоритм розв’язування задачі на безумовний екстремум. Визначення типу екстремуму. Навести відповідні формули.
- •53. Метод множників Лагранжа пошуку умовного екстремуму функції. Економічна інтерпретація множників Лагранжа. Навести відповідні формули.
- •54. Визначення типу екстремуму. Матриця Гессе. Навести відповідні формули.
- •55. Сідлова точка та необхідні умови її існування. Навести відповідні формули.
- •56. Визначення опуклої та угнутої функції. Теорема Куна-Таккера. Навести відповідні формули.
- •Теорема Куна-Таккера
- •57. Необхідні та достатні умови існування оптимального плану задачі опуклого програмування.
- •58. Квадратична форма та її властивості.
- •59. Постановка задачі квадратичного програмування та її математична модель.
- •60 Метод розв’язування задач квадратичного програмування
- •61. Градієнтні методи розв’язання задач нелінійного програмування. Метод Франка-Вульфа розв’язування задачі нелінійного програмування. Навести відповідні формули.
- •62. Загальна постановка задачі динамічного програмування. Умови застосування моделі динамічного програмування.
- •63. Принцип оптимальності Беллмана. Багатокроковий процес прийняття рішень.
- •64. Основні етапи складання математичної моделі задачі динамічного програмування.
- •65 Етапи рішення задачі динамічного програмування
- •66. Загальна математична постановка задачі стохастичного програмування
- •67. Особливості математичної постановки задач стохастичного програмування
- •68 Основні поняття теорії ігор
- •Матричні ігри двох осіб Якщо у грі беруть участь два гравці, то така гра називається парною (грою двох осіб). Часто у грі беруть участь багато сторін.
- •69 Зведення матричної гри до задачі лінійного програмування
10. Роль прикладних економіко-математичних досліджень.
Можна виокремити щонайменше чотири функції щодо застосування математичних методів і моделей у вирішенні практичних проблем.
1. Удосконалення системи економічної інформації. Математичні методи та моделі дозволяють упорядковувати систему економічної інформації, виявляти недоліки в наявній інформації і виробляти вимоги до підготовки нової інформації чи її коригування.
2. Інтенсифікація і підвищення точності економічних розрахунків. Формалізація економічних задач і застосування комп’ютерів багаторазово прискорюють типові, масові розрахунки, підвищують точність і скорочують трудомісткість, дозволяють проводити багатоваріантні економічні дослідження та обґрунтування складних заходів, недосяжні за панування «ручної» технології.
3. Поглиблення кількісного аналізу економічних проблем. Завдяки застосуванню економіко-математичного моделювання значно підсилюються можливості конкретного кількісного аналізу, вивчення багатьох чинників, які впливають на економічні процеси, кількісна оцінка наслідків змін умов розвитку економічних об’єктів тощо.
4. Розв’язання принципово нових економічних задач. За допомогою математичного моделювання вдається розв’язувати такі економічні задачі, які іншими засобами розв’язати практично неможливо, наприклад, знаходження оптимального варіанта народногосподарського плану, імітація народногосподарських заходів, автоматизація контролю за функціонуванням складних економічних об’єктів.
11. Взаємозв’язкок валідації, верифікації та забезпечення довіри до моделі.
Перевірку можна умовно розділити на два етапи: перевірка правильності створення концептуальної моделі, тобто задуму – валідація; перевірка правильності її реалізації – верифікація. Під час перевірки достовірності потрібно відповісти на запитання про відповідність моделі модельованій системі, тобто визначити, наскільки ізоморфні система та модель.
На етапі верифікації розглядають, чи правильно перетворено концептуальні модель на комп’ютерну програму, тобто виконують налагодження програми моделювання.
Валідація – це процес, який дає змогу встановити чи є модель (а не комп’ютерна програма) точним відображенням системи для конкретних цілей дослідження.
12. Постановка задачі економіко-математичного моделювання. Сутність понять: «параметри», «змінні», «цільова функція», «система обмежень».
Параметр — величина, значения которой служат для различения групп элементов некоторого множества между собой.
Переменная — это величина, характеризующаяся множеством значений, которое она может принимать
Функцію називають цільовою функцією, або функцією мети. Для економічної системи це є функція ефективності її функціонування та розвитку, оскільки значення F відображує ступінь досягнення певної мети.
У загальному вигляді задача економіко-математичного моделювання формулюється так:
Знайти такі значення керованих змінних xj, щоб цільова функція набувала екстремального (максимального чи мінімального значення). Система називається системою обмежень, або системою умов задачі. Вона описує внутрішні технологічні та економічні процеси функціонування й розвитку виробничо-економічної системи, а також процеси зовнішнього середовища, які впливають на результат діяльності системи.
13. Постановка задачі економіко-математичного моделювання. Сутність понять: «оптимальний план», «допустимий план», «область існування планів».
Подамо схематично довільну економічну систему у такому вигляді (рис. 2.1):
Параметри сk (k = 1, 2, ..., l) є кількісними характеристиками системи. Наприклад, якщо йдеться про таку економічну систему, як сільськогосподарське підприємство, то його параметрами є наявні ресурси, рівень урожайності сільськогосподарських культур, продуктивності тварин, норми витрат ресурсів, ціни та собівартість проміжної і кінцевої продукції, норми податків, проценти за кредит, ціни на куповані ресурси тощо.
Частина параметрів сk для певної системи може бути сталими величинами, наприклад, норми висіву насіння сільськогосподарських культур, норми споживання тваринами кормів тощо, а частина — змінними, тобто залежатиме від певних умов, як, скажімо, урожайність сільськогосподарських культур, собівартість продукції, реалізаційні ціни на рослинницьку й тваринницьку продукцію.
Змінні величини бувають незалежними чи залежними, дискретними чи неперервними, детермінованими або випадковими. Наприклад, залежною змінною є собівартість продукції, незалежною від процесу функціонування підприємства величиною є початковий розмір статутного фонду, дискретною – кількість корів, неперервною – площа посіву озимої пшениці, детермінованою – норма висіву насіння кукурудзи на гектар, випадковою – кількість телят, які народяться у плановому періоді.
Вхідні змінні економічної системи бувають двох видів: керовані xj (j=1,2,...,n), значення яких можна змінювати в деякому інтервалі; і некеровані змінні yi (і=1,2, ..., m), значення яких не залежать від волі людей і визначаються зовнішнім середовищем. Наприклад, обсяг придбаного пального – керована, а температура повітря – некерована змінна.
У загальному вигляді задача економіко-математичного моделювання формулюється так:
Знайти такі значення керованих змінних xj, щоб цільова функція набувала екстремального (максимального чи мінімального значення).
Отже, потрібно відшукати значення
Можливості
вибору xj
завжди обмежені зовнішніми щодо системи
умовами, параметрами виробничо-економічної
системи тощо.
Ці процеси можна описати системою математичних рівностей та нерівностей виду:
Тут
набір символів (
,
=,
)
означає, що для деяких значень поточного
індексу і
виконуються нерівності типу
,
для інших – рівності (=), а для решти –
нерівності типу
.
Ця система називається системою обмежень, або системою умов задачі. Вона описує внутрішні технологічні та економічні процеси функціонування й розвитку виробничо-економічної системи, а також процеси зовнішнього середовища, які впливають на результат діяльності системи. Для економічних систем змінні xj мають бути невід’ємними:
. (2.4)
Залежності (2.2)-(2.4) утворюють економіко-математичну модель економічної системи. Розробляючи таку модель, слід дотримуватись певних правил:
1. Модель має адекватно описувати реальні технологічні та економічні процеси.
2. У моделі потрібно враховувати все істотне, суттєве в досліджуваному явищі чи процесі, нехтуючи всім другорядним, неістотним у ньому.
3. Модель має бути зрозумілою для користувача, зручною для реалізації на ЕОМ.
4. Необхідно, щоб множина змінних xj була не порожньою. З цією метою в економіко-математичних моделях за змоги слід уникати обмежень типу «=», а також суперечливих обмежень. Якщо система (2.3), (2.4) має єдиний розв’язок, то не існує набору різних планів, а отже, й задачі вибору оптимального з них.
Будь-який набір змінних x1, x2, ..., xn, що задовольняє умови (2.3) і (2.4), називають допустимим планом, або планом. Очевидно, що кожний допустимий план є відповідною стратегією економічної системи, програмою дій. Кожному допустимому плану відповідає певне значення цільової функції, яке обчислюється за формулою (2.2).
Сукупність усіх розв’язків системи обмежень (2.3) і (2.4), тобто множина всіх допустимих планів утворює область існування планів.
Розв’язком економіко – математичної моделі або допустимим планом називається набір значень невідомих, який задовольняє її системі обмежень. Модель має багато рішень або допустимих планів і серед них потрібно знайти єдине, яке задовольняє системі обмежень і цільовій функції.
Допустимий план, який задовольняє цільовій функції, називається оптимальним.
Оптимальний план є розв’язком задачі економіко-математичного моделювання (2.2)—(2.4).