Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
i_vse_vse_vse.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.66 Mб
Скачать

8 Основні засади щодо класифікації економіко-математичних моделей. Наведіть приклади та дайте відповідні пояснення.

Відповідно до призначення запропоновані критерії класифікації дозволили виділити:

  • когнітивні моделі, призначенням яких є відтворення з метою подальшого дослідження істотних закономірностей, що мають місце в об'єкті-оригіналі, що відповідають на питання “що є досліджувана система?”;

  • прогностичні моделі, що служать для оцінки майбутнього стану об'єкта-оригіналу, що відповідають на питання: “якою буде досліджувана система?”;

  • управлінські моделі, метою якої є визначення бажаного стану системи й способів його досягнення, що відповідають на питання: “якою повинна бути досліджувана система?”;

  • експериментальні моделі, що застосовуються в ситуаційному аналізі та відповідають на питання: “що буде з досліджуваною системою, якщо..?”.

У математичному програмуванні виділяють два напрямки — детерміновані задачі і стохастичні. Детерміновані задачі не містять випадкових змінних чи параметрів. Уся початкова інформація повністю визначена. У стохастичних задачах використовується вхідна інформація, яка містить елементи невизначеності, або деякі параметри набувають значень відповідно до визначених функцій розподілу випадкових величин. Наприклад, якщо в економіко-математичній моделі врожайності сільськогосподарських культур задані своїми математичними сподіваннями, то така задача є детермінованою. Якщо ж врожайності задані функціями розподілу, наприклад нормального з математичним сподіванням а і дисперсією D, то така задача є стохастичною.

Як детерміновані, так і стохастичні задачі можуть бути статичними (однокроковими) або динамічними (багатокроковими). Оскільки економічні процеси розвиваються в часі, відповідні економіко-математичні моделі мають відображати їх динаміку. Поняття динамічності пов’язане зі змінами об’єкта (явища, процесу) у часі.

Задачі математичного програмування поділяють також на дискретні і неперервні. Дискретними називають задачі, в яких одна, кілька або всі змінні набувають лише дискретних значень. З-поміж них окремий тип становлять задачі, в яких одна або кілька змінних набувають цілочислових значень. Їх називають задачами цілочислового програмування. Якщо всі змінні можуть набувати будь-яких значень на деяких інтервалах числової осі, то задача є неперервною.

9. Сутність аналітичного та комп’ютерного моделювання.

Класифікація видів математичних моделей може проводитися й за такими ознаками: аналітичне та комп’ютерне моделювання (рис. 2.1.3) .

Для аналітичного моделювання характерним є те, що процеси функціонування елементів системи записують у вигляді деяких математичних співвідношень (алгебраїчних, інтегро-диференційних, кінцево-різницевих тощо) чи логічних умов. Комп’ютерне моделювання характеризується тим, що математична модель системи (використовуючи основні співвідношення аналітичного моделювання) подається у вигляді деякого алгоритму та програми, придатної для її реалізації на комп’ютері, що дає змогу проводити з нею обчислювальні експерименти. Залежно від математичного інструментарію (апарату), що використовується в побудові моделі, та способу організації обчислювальних експериментів можна виокремити три взаємопов’язані види моделювання: чисельне, алгоритмічне (імітаційне) та статистичне.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]