
- •Сутність поняття “модель”. Особливості математичної моделі
- •Сутність методології математичного моделювання. Узагальнена схема математичного моделювання
- •Особливості і принципи математичного моделювання
- •Поняття економіко-математичної моделі. Узагальнена схема процесу математичного моделювання економічних процесів.
- •Особливості процесу математичного моделювання економічних систем. Особливості економічних спостережень і вимірів.
- •Практичні завдання економіко-математичного моделювання. Роль математичних методів в економіці.
- •Охарактеризуйте основні етапи економіко-математичного моделювання. Етапи економіко-математичного моделювання
- •8 Основні засади щодо класифікації економіко-математичних моделей. Наведіть приклади та дайте відповідні пояснення.
- •9. Сутність аналітичного та комп’ютерного моделювання.
- •10. Роль прикладних економіко-математичних досліджень.
- •11. Взаємозв’язкок валідації, верифікації та забезпечення довіри до моделі.
- •12. Постановка задачі економіко-математичного моделювання. Сутність понять: «параметри», «змінні», «цільова функція», «система обмежень».
- •14. Предмет математичного програмування. Приклади економічних задач математичного програмування.
- •15. Багатокритеріальна оптимізація економічних систем. Навести відповідні формули.
- •16. Класифікація задач математичного програмування
- •17. Постановка транспортної задачі та методи її розвязання
- •18. Алгоритм розв’язання транспортної задачі методом потенціалів
- •20. Методи побудови першого опорного плану транспортної задачі: мінімальної вартості; апроксимації Фогеля
- •21. Економічна постановка та математична модель задачі лінійного програмування. Основні поняття задачі лінійного програмування
- •22. Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування. Навести відповідні формули.
- •24. Геометрична інтерпретація задач лінійного програмування. Властивості розв’язків задачі лінійного програмування Геометрична інтерпретація задачі лінійного програмування
- •25 Алгоритм графічного методу розв’язування задач лінійного програмування
- •27.Умова оптимальності розв’язку задачі лінійного програмування симплекс-методом. Алгоритм симплексного методу. Навести відповідні формули Оптимальний розв’язок. Критерій оптимальності плану
- •28 Метод штучного базису. Ознака оптимальності плану із штучним базисом. Навести відповідні формули Метод штучного базису (самостійна робота)
- •29 Алгоритм розв’язання розширеної задачі лінійного програмування. Навести відповідні формули
- •31. Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі. Навести відповідні формули
- •32. Економічна інтерпретація прямої задачі лінійного програмування. Економічний зміст двоїстої задачі й двоїстих оцінок
- •33. Перша теорема двоїстості, її економічна інтерпретація. Навести відповідні формули
- •35.Застосування теорем двоїстості в розв’язуванні задач лінійного програмування. Навести відповідні формули см вопр 33,34.
- •37. Аналіз розв’язків лінійних економіко-математичних моделей
- •Основні властивості розв’язків задачі лінійного програмування
- •38. Оцінка рентабельності продукції. Доцільність введення нової продукції. Навести відповідні формули
- •42.Цілочислове програмування. Приклади застосування цілочислових задач в плануванні й управлінні виробництвом. Навести відповідні формули.
- •43. Геометрична інтерпретація задачі цілочислового програмування
- •44.Загальна характеристика методів розв’язування задач цілочислового програмування
- •46. Методи відтинання. Метод Гоморі. Навести відповідні формули.
- •47. Комбінаторні методи. Метод гілок і меж. Навести відповідні формули.
- •48. Наближені методи розв’язання задачі цілочислового лінійного програмування. Метод вектора спаду.
- •49. Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- •50.Графічний метод розв’язування задач нелінійного програмування.
- •51. Основні труднощі розв’язування задач нелінійного програмування
- •52. Алгоритм розв’язування задачі на безумовний екстремум. Визначення типу екстремуму. Навести відповідні формули.
- •53. Метод множників Лагранжа пошуку умовного екстремуму функції. Економічна інтерпретація множників Лагранжа. Навести відповідні формули.
- •54. Визначення типу екстремуму. Матриця Гессе. Навести відповідні формули.
- •55. Сідлова точка та необхідні умови її існування. Навести відповідні формули.
- •56. Визначення опуклої та угнутої функції. Теорема Куна-Таккера. Навести відповідні формули.
- •Теорема Куна-Таккера
- •57. Необхідні та достатні умови існування оптимального плану задачі опуклого програмування.
- •58. Квадратична форма та її властивості.
- •59. Постановка задачі квадратичного програмування та її математична модель.
- •60 Метод розв’язування задач квадратичного програмування
- •61. Градієнтні методи розв’язання задач нелінійного програмування. Метод Франка-Вульфа розв’язування задачі нелінійного програмування. Навести відповідні формули.
- •62. Загальна постановка задачі динамічного програмування. Умови застосування моделі динамічного програмування.
- •63. Принцип оптимальності Беллмана. Багатокроковий процес прийняття рішень.
- •64. Основні етапи складання математичної моделі задачі динамічного програмування.
- •65 Етапи рішення задачі динамічного програмування
- •66. Загальна математична постановка задачі стохастичного програмування
- •67. Особливості математичної постановки задач стохастичного програмування
- •68 Основні поняття теорії ігор
- •Матричні ігри двох осіб Якщо у грі беруть участь два гравці, то така гра називається парною (грою двох осіб). Часто у грі беруть участь багато сторін.
- •69 Зведення матричної гри до задачі лінійного програмування
8 Основні засади щодо класифікації економіко-математичних моделей. Наведіть приклади та дайте відповідні пояснення.
Відповідно до призначення запропоновані критерії класифікації дозволили виділити:
когнітивні моделі, призначенням яких є відтворення з метою подальшого дослідження істотних закономірностей, що мають місце в об'єкті-оригіналі, що відповідають на питання “що є досліджувана система?”;
прогностичні моделі, що служать для оцінки майбутнього стану об'єкта-оригіналу, що відповідають на питання: “якою буде досліджувана система?”;
управлінські моделі, метою якої є визначення бажаного стану системи й способів його досягнення, що відповідають на питання: “якою повинна бути досліджувана система?”;
експериментальні моделі, що застосовуються в ситуаційному аналізі та відповідають на питання: “що буде з досліджуваною системою, якщо..?”.
У математичному програмуванні виділяють два напрямки — детерміновані задачі і стохастичні. Детерміновані задачі не містять випадкових змінних чи параметрів. Уся початкова інформація повністю визначена. У стохастичних задачах використовується вхідна інформація, яка містить елементи невизначеності, або деякі параметри набувають значень відповідно до визначених функцій розподілу випадкових величин. Наприклад, якщо в економіко-математичній моделі врожайності сільськогосподарських культур задані своїми математичними сподіваннями, то така задача є детермінованою. Якщо ж врожайності задані функціями розподілу, наприклад нормального з математичним сподіванням а і дисперсією D, то така задача є стохастичною.
Як детерміновані, так і стохастичні задачі можуть бути статичними (однокроковими) або динамічними (багатокроковими). Оскільки економічні процеси розвиваються в часі, відповідні економіко-математичні моделі мають відображати їх динаміку. Поняття динамічності пов’язане зі змінами об’єкта (явища, процесу) у часі.
Задачі математичного програмування поділяють також на дискретні і неперервні. Дискретними називають задачі, в яких одна, кілька або всі змінні набувають лише дискретних значень. З-поміж них окремий тип становлять задачі, в яких одна або кілька змінних набувають цілочислових значень. Їх називають задачами цілочислового програмування. Якщо всі змінні можуть набувати будь-яких значень на деяких інтервалах числової осі, то задача є неперервною.
9. Сутність аналітичного та комп’ютерного моделювання.
Класифікація видів математичних моделей може проводитися й за такими ознаками: аналітичне та комп’ютерне моделювання (рис. 2.1.3) .
Для аналітичного моделювання характерним є те, що процеси функціонування елементів системи записують у вигляді деяких математичних співвідношень (алгебраїчних, інтегро-диференційних, кінцево-різницевих тощо) чи логічних умов. Комп’ютерне моделювання характеризується тим, що математична модель системи (використовуючи основні співвідношення аналітичного моделювання) подається у вигляді деякого алгоритму та програми, придатної для її реалізації на комп’ютері, що дає змогу проводити з нею обчислювальні експерименти. Залежно від математичного інструментарію (апарату), що використовується в побудові моделі, та способу організації обчислювальних експериментів можна виокремити три взаємопов’язані види моделювання: чисельне, алгоритмічне (імітаційне) та статистичне.