
- •Сутність поняття “модель”. Особливості математичної моделі
- •Сутність методології математичного моделювання. Узагальнена схема математичного моделювання
- •Особливості і принципи математичного моделювання
- •Поняття економіко-математичної моделі. Узагальнена схема процесу математичного моделювання економічних процесів.
- •Особливості процесу математичного моделювання економічних систем. Особливості економічних спостережень і вимірів.
- •Практичні завдання економіко-математичного моделювання. Роль математичних методів в економіці.
- •Охарактеризуйте основні етапи економіко-математичного моделювання. Етапи економіко-математичного моделювання
- •8 Основні засади щодо класифікації економіко-математичних моделей. Наведіть приклади та дайте відповідні пояснення.
- •9. Сутність аналітичного та комп’ютерного моделювання.
- •10. Роль прикладних економіко-математичних досліджень.
- •11. Взаємозв’язкок валідації, верифікації та забезпечення довіри до моделі.
- •12. Постановка задачі економіко-математичного моделювання. Сутність понять: «параметри», «змінні», «цільова функція», «система обмежень».
- •14. Предмет математичного програмування. Приклади економічних задач математичного програмування.
- •15. Багатокритеріальна оптимізація економічних систем. Навести відповідні формули.
- •16. Класифікація задач математичного програмування
- •17. Постановка транспортної задачі та методи її розвязання
- •18. Алгоритм розв’язання транспортної задачі методом потенціалів
- •20. Методи побудови першого опорного плану транспортної задачі: мінімальної вартості; апроксимації Фогеля
- •21. Економічна постановка та математична модель задачі лінійного програмування. Основні поняття задачі лінійного програмування
- •22. Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування. Навести відповідні формули.
- •24. Геометрична інтерпретація задач лінійного програмування. Властивості розв’язків задачі лінійного програмування Геометрична інтерпретація задачі лінійного програмування
- •25 Алгоритм графічного методу розв’язування задач лінійного програмування
- •27.Умова оптимальності розв’язку задачі лінійного програмування симплекс-методом. Алгоритм симплексного методу. Навести відповідні формули Оптимальний розв’язок. Критерій оптимальності плану
- •28 Метод штучного базису. Ознака оптимальності плану із штучним базисом. Навести відповідні формули Метод штучного базису (самостійна робота)
- •29 Алгоритм розв’язання розширеної задачі лінійного програмування. Навести відповідні формули
- •31. Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі. Навести відповідні формули
- •32. Економічна інтерпретація прямої задачі лінійного програмування. Економічний зміст двоїстої задачі й двоїстих оцінок
- •33. Перша теорема двоїстості, її економічна інтерпретація. Навести відповідні формули
- •35.Застосування теорем двоїстості в розв’язуванні задач лінійного програмування. Навести відповідні формули см вопр 33,34.
- •37. Аналіз розв’язків лінійних економіко-математичних моделей
- •Основні властивості розв’язків задачі лінійного програмування
- •38. Оцінка рентабельності продукції. Доцільність введення нової продукції. Навести відповідні формули
- •42.Цілочислове програмування. Приклади застосування цілочислових задач в плануванні й управлінні виробництвом. Навести відповідні формули.
- •43. Геометрична інтерпретація задачі цілочислового програмування
- •44.Загальна характеристика методів розв’язування задач цілочислового програмування
- •46. Методи відтинання. Метод Гоморі. Навести відповідні формули.
- •47. Комбінаторні методи. Метод гілок і меж. Навести відповідні формули.
- •48. Наближені методи розв’язання задачі цілочислового лінійного програмування. Метод вектора спаду.
- •49. Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- •50.Графічний метод розв’язування задач нелінійного програмування.
- •51. Основні труднощі розв’язування задач нелінійного програмування
- •52. Алгоритм розв’язування задачі на безумовний екстремум. Визначення типу екстремуму. Навести відповідні формули.
- •53. Метод множників Лагранжа пошуку умовного екстремуму функції. Економічна інтерпретація множників Лагранжа. Навести відповідні формули.
- •54. Визначення типу екстремуму. Матриця Гессе. Навести відповідні формули.
- •55. Сідлова точка та необхідні умови її існування. Навести відповідні формули.
- •56. Визначення опуклої та угнутої функції. Теорема Куна-Таккера. Навести відповідні формули.
- •Теорема Куна-Таккера
- •57. Необхідні та достатні умови існування оптимального плану задачі опуклого програмування.
- •58. Квадратична форма та її властивості.
- •59. Постановка задачі квадратичного програмування та її математична модель.
- •60 Метод розв’язування задач квадратичного програмування
- •61. Градієнтні методи розв’язання задач нелінійного програмування. Метод Франка-Вульфа розв’язування задачі нелінійного програмування. Навести відповідні формули.
- •62. Загальна постановка задачі динамічного програмування. Умови застосування моделі динамічного програмування.
- •63. Принцип оптимальності Беллмана. Багатокроковий процес прийняття рішень.
- •64. Основні етапи складання математичної моделі задачі динамічного програмування.
- •65 Етапи рішення задачі динамічного програмування
- •66. Загальна математична постановка задачі стохастичного програмування
- •67. Особливості математичної постановки задач стохастичного програмування
- •68 Основні поняття теорії ігор
- •Матричні ігри двох осіб Якщо у грі беруть участь два гравці, то така гра називається парною (грою двох осіб). Часто у грі беруть участь багато сторін.
- •69 Зведення матричної гри до задачі лінійного програмування
69 Зведення матричної гри до задачі лінійного програмування
Якщо матрична гра не має сідлової точки, то знаходження її розв’язку, особливо за великої кількості стратегій, – доволі складна задача, яку можна ефективно розв’язати методами лінійного програмування.
Задача розглядається в такому формулюванні: знайти вектори ймовірностей з метою визначення оптимального значення ціни гри та оптимальних стратегій.
Зауважимо, що доведено основну теорему теорії ігор: кожна скінчена гра має принаймні один розв’язок, який можливий в області змішаних стратегій.
Отже, нехай маємо скінченну матричну гру з платіжною матрицею
.
Оскільки оптимальні стратегії гравців А і В дозволяють отримати виграш
,
то
використання оптимальної змішаної
стратегії гравцем А має забезпечувати
виграш не менший за ціну гри в разі
вибору гравцем В будь-яких стратегій.
Математично ця умова записується так:
.
(10.1)
Відповідно
використання оптимальної змішаної
стратегії гравцем В має за будь-яких
стратегій гравця А забезпечувати
програш
В, що не перевищує ціни гри
:
.
(10.2)
Ці два співвідношення застосовують для знаходження розв’язку гри.
Отже,
потрібно знайти
,
щоб
за умов , , .
Зауважимо, що ціна гри невідома і має бути визначена під час розв’язування задачі.
Модель ігрової задачі може бути спрощена.
З (10.1) маємо:
Поділивши всі обмеження на , дістанемо:
Нехай
,
тоді
Згідно
з умовою
,
звідки
.
Отже, цільова функція початкової задачі набирає такого вигляду:
.
У
результаті задача лінійного
програмування:
(10.3)за
умов
(10.4)
. (10.5)
Розв’язавши
цю задачу симплексним методом, знайдемо
значення
,
а також
і
,
тобто визначимо змішану оптимальну
стратегію для гравця А.
За аналогією запишемо задачу лінійного програмування для визначення оптимальної стратегії гравця В. Нехай
.
Тоді маємо таку лінійну модель:
за умов
.
Очевидно, що задача лінійного програмування для гравця В є двоїстою до задачі гравця А, а тому оптимальний розв’язок однієї з них визначає оптимальний розв’язок спряженої.
Задачі теорії ігор належать до задач прийняття рішень за умов невизначеності та ризику.
Невизначеність результатів гри зумовлена кількома чинниками. По-перше, як правило, кількість можливих варіантів розвитку подій дуже велика, тому передбачити результат гри неможливо. Простою ілюстрацією такого твердження є гра в шахи. Із-за безлічі можливих комбінацій знайти оптимальний розв’язок такої гри неможливо. По-друге, значний вплив на хід та результати гри мають випадкові чинники, дію яких передбачити неможливо, наприклад, у рулетці. По-третє, джерелом невизначеності є брак інформації щодо дій противника. Крім того, невизначеність певною мірою може стосуватися також і мети, якої прагне досягти суб’єкт. Не завжди таку мету можна виразити однозначно, а тим більше одним показником.
Зрозуміло, що коли початкові умови задачі містять значну кількість невизначених параметрів, то математичне досліджен ня не може дати чіткого обґрунтування раціонального роз в’язку, однак і за відсутності повної визначеності кількісний аналіз дає наукову основу для прийняття рішень. Т. Сааті – засновник науки «Дослідження операцій» (інструментарієм якої є «Математичне програмування») писав, що «Дослідження операцій» – це таке мистецтво, яке дає погані відповіді на такі практичні запитання, на які інші методи дають ще гірші відповіді.
Отже, уможливлюючи розв’язування задач за умов невизначеності, навіть якщо неможливо знайти точний оптимальний розв’язок, математичні методи, в тому числі і методи теорії ігор, являють собою допоміжний матеріал, який дає змогу в складній ситуації оцінити кожен з можливих варіантів розвитку
70. Теоретичні основи геометричної інтерпретації ігрової ситуації. |
Решение игр размера 2xn или nx2 допускает наглядную геометрическую интерпретацию. Такие игры можно решать графически.
Дадим геометрическую интерпретацию игры, рассмотренной выше в рамках примера 5.3.
На плоскости XY по оси абсцисс отложим единичный отрезок A1A2 (рисунок 5.1). Каждой точке отрезка поставим в соответствие некоторую смешанную стратегию U = (u1, u2). Причем расстояние от некоторой промежуточной точки U до правого конца этого отрезка – это вероятность u1 выбора стратегии A1, расстояние до левого конца - вероятность u2 выбора стратегии A2. Точка А1 соответствует чистой стратегии А1, точка А2 – чистой стратегии А2.
В точках А1 и А2 восстановим перпендикуляры и будем откладывать на них выигрыши игроков. На первом перпендикуляре (совпадающем с осью OY) покажем выигрыш игрока А при использовании стратегии А1, на втором – при использовании стратегии A2. Если игрок А применяет стратегию A1, то его выигрыш при стратегии B1 игрока B равен 2, а при стратегии B2 он равен 5. Числам 2 и 5 на оси OY соответствуют точки B1 и B2. Аналогично на втором перпендикуляре найдем точки B'1 и B'2 (выигрыши 6 и 4).
Соединяя между собой точки B1 и B'1, B2 и B'2, получим две прямые, расстояние от которых до оси OX определяет средний выигрыш при любом сочетании соответствующих стратегий.
Например, расстояние от любой точки отрезка B1B'1 до оси OX определяет средний выигрыш игрока A при любом сочетании стратегий A1 и A2 (с вероятностями u1 и u2) и стратегии B1 игрока B.
Рисунок 5.1 – Геометрическая интерпретация игры примера 5.3 (нахождение оптимальной стратегии игрока А)
Ординаты
точек, принадлежащих ломаной
B1MB'2 определяют
минимальный выигрыш игрока A при
использовании им любых смешанных
стратегий. Эта минимальная величина
является наибольшей в точке М,
следовательно, этой точке соответствует
оптимальная стратегия U* =
(
,
),
а ее ордината равна цене игры v.
Координаты точки M найдем, как координаты точки пересечения прямых B1B'1 и B2B'2.
Для этого необходимо знать уравнения прямых. Составить такие уравнения можно, используя формулу для уравнения прямой, проходящей через две точки:
|
Составим уравнения прямых для нашей задачи.
Прямая B1B'1:
|
Прямая B2B'2:
= |
Получим систему:
|
|
Решим ее:
|
4x + 2 = -x + 5, 5x = 3, x = 3/5, y = -3/5 + 5 = 22/5. |
Таким образом, U* = (2/5, 3/5), v = 22/5.
Аналогично решается задача по нахождению оптимальной стратегии игрока B. Разница состоит в том, что находится точка, сводящая к минимуму средний проигрыш, поэтому на рисунке 5.2 рассматривается ломаная A2MA'1.
Рисунок 5.2 – Геометрическая интерпретация игры примера 5.3 (нахождение оптимальной стратегии игрока B)
Найдем координаты точки М.
Прямая A1A'1:
|
Прямая A2A'2:
= |
|
3x + 2 = -2x + 6, 5x = 4, x = 4/5. |
Таким
образом,
=
1/5,
=
4/5.
В общем случае схема решения игры 2xn или nx2 графическим методом состоит в следующем.
1. Строят прямые, соответствующие стратегиям второго (первого) игрока.
2. Находят две стратегии второго (первого) игрока, которым соответствуют две прямые, пересекающиеся в точке с максимальной (минимальной) ординатой. Эти стратегии являются активными в оптимальной смешанной стратегии второго (первого) игрока.
3. Находят координаты точки пересечения, тем самым определяя оптимальную стратегию первого (второго) игрока и цену игры.
4. Оптимальную стратегию другого игрока находят, решая систему уравнений, включающую его активные стратегии.
Пример 5.4. Найдите решение игры, заданной матрицей:
A = |
|
7 9 8 10 6 9 |
|
Решение.
Сначала
проверим наличие седловой точки:
=
7,
=
9. Поскольку нижняя и верхняя цены игры
не совпадают, седловая точка отсутствует,
и решение следует искать в смешанных
стратегиях.
Выполним построения на плоскости XY в соответствии с методикой, приведенной выше. Результат представлен на рисунке 5.3.
Рисунок 5.3 – Геометрическая интерпретация игры примера 5.4
Точка М находится на пересечении отрезков, соответствующих стратегиям B1 и B2 второго игрока.
Найдем ее координаты:
B1B'1:
= |
B2B'2:
= |
|
3x + 7 = -3x + 9, 6x = 2, x = 1/3, т.е. = 2/3, = 1/3, цена игры v = 8. |
Активными
стратегиями игрока B являются стратегии
B1 и
B2,
следовательно,
=
0.
Используя выражение (5.2), вытекающее из теоремы об активных стратегиях, составим систему из двух уравнений с двумя неизвестными:
|
|
Второе уравнение умножим на семь и вычтем из первого:
|
2 = 1, = 1/2, = 1/2. |
Ответ: U* = (2/3, 1/3); Z* = (1/2, 1/2, 0); v = 8.