
- •Сутність поняття “модель”. Особливості математичної моделі
- •Сутність методології математичного моделювання. Узагальнена схема математичного моделювання
- •Особливості і принципи математичного моделювання
- •Поняття економіко-математичної моделі. Узагальнена схема процесу математичного моделювання економічних процесів.
- •Особливості процесу математичного моделювання економічних систем. Особливості економічних спостережень і вимірів.
- •Практичні завдання економіко-математичного моделювання. Роль математичних методів в економіці.
- •Охарактеризуйте основні етапи економіко-математичного моделювання. Етапи економіко-математичного моделювання
- •8 Основні засади щодо класифікації економіко-математичних моделей. Наведіть приклади та дайте відповідні пояснення.
- •9. Сутність аналітичного та комп’ютерного моделювання.
- •10. Роль прикладних економіко-математичних досліджень.
- •11. Взаємозв’язкок валідації, верифікації та забезпечення довіри до моделі.
- •12. Постановка задачі економіко-математичного моделювання. Сутність понять: «параметри», «змінні», «цільова функція», «система обмежень».
- •14. Предмет математичного програмування. Приклади економічних задач математичного програмування.
- •15. Багатокритеріальна оптимізація економічних систем. Навести відповідні формули.
- •16. Класифікація задач математичного програмування
- •17. Постановка транспортної задачі та методи її розвязання
- •18. Алгоритм розв’язання транспортної задачі методом потенціалів
- •20. Методи побудови першого опорного плану транспортної задачі: мінімальної вартості; апроксимації Фогеля
- •21. Економічна постановка та математична модель задачі лінійного програмування. Основні поняття задачі лінійного програмування
- •22. Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування. Навести відповідні формули.
- •24. Геометрична інтерпретація задач лінійного програмування. Властивості розв’язків задачі лінійного програмування Геометрична інтерпретація задачі лінійного програмування
- •25 Алгоритм графічного методу розв’язування задач лінійного програмування
- •27.Умова оптимальності розв’язку задачі лінійного програмування симплекс-методом. Алгоритм симплексного методу. Навести відповідні формули Оптимальний розв’язок. Критерій оптимальності плану
- •28 Метод штучного базису. Ознака оптимальності плану із штучним базисом. Навести відповідні формули Метод штучного базису (самостійна робота)
- •29 Алгоритм розв’язання розширеної задачі лінійного програмування. Навести відповідні формули
- •31. Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі. Навести відповідні формули
- •32. Економічна інтерпретація прямої задачі лінійного програмування. Економічний зміст двоїстої задачі й двоїстих оцінок
- •33. Перша теорема двоїстості, її економічна інтерпретація. Навести відповідні формули
- •35.Застосування теорем двоїстості в розв’язуванні задач лінійного програмування. Навести відповідні формули см вопр 33,34.
- •37. Аналіз розв’язків лінійних економіко-математичних моделей
- •Основні властивості розв’язків задачі лінійного програмування
- •38. Оцінка рентабельності продукції. Доцільність введення нової продукції. Навести відповідні формули
- •42.Цілочислове програмування. Приклади застосування цілочислових задач в плануванні й управлінні виробництвом. Навести відповідні формули.
- •43. Геометрична інтерпретація задачі цілочислового програмування
- •44.Загальна характеристика методів розв’язування задач цілочислового програмування
- •46. Методи відтинання. Метод Гоморі. Навести відповідні формули.
- •47. Комбінаторні методи. Метод гілок і меж. Навести відповідні формули.
- •48. Наближені методи розв’язання задачі цілочислового лінійного програмування. Метод вектора спаду.
- •49. Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- •50.Графічний метод розв’язування задач нелінійного програмування.
- •51. Основні труднощі розв’язування задач нелінійного програмування
- •52. Алгоритм розв’язування задачі на безумовний екстремум. Визначення типу екстремуму. Навести відповідні формули.
- •53. Метод множників Лагранжа пошуку умовного екстремуму функції. Економічна інтерпретація множників Лагранжа. Навести відповідні формули.
- •54. Визначення типу екстремуму. Матриця Гессе. Навести відповідні формули.
- •55. Сідлова точка та необхідні умови її існування. Навести відповідні формули.
- •56. Визначення опуклої та угнутої функції. Теорема Куна-Таккера. Навести відповідні формули.
- •Теорема Куна-Таккера
- •57. Необхідні та достатні умови існування оптимального плану задачі опуклого програмування.
- •58. Квадратична форма та її властивості.
- •59. Постановка задачі квадратичного програмування та її математична модель.
- •60 Метод розв’язування задач квадратичного програмування
- •61. Градієнтні методи розв’язання задач нелінійного програмування. Метод Франка-Вульфа розв’язування задачі нелінійного програмування. Навести відповідні формули.
- •62. Загальна постановка задачі динамічного програмування. Умови застосування моделі динамічного програмування.
- •63. Принцип оптимальності Беллмана. Багатокроковий процес прийняття рішень.
- •64. Основні етапи складання математичної моделі задачі динамічного програмування.
- •65 Етапи рішення задачі динамічного програмування
- •66. Загальна математична постановка задачі стохастичного програмування
- •67. Особливості математичної постановки задач стохастичного програмування
- •68 Основні поняття теорії ігор
- •Матричні ігри двох осіб Якщо у грі беруть участь два гравці, то така гра називається парною (грою двох осіб). Часто у грі беруть участь багато сторін.
- •69 Зведення матричної гри до задачі лінійного програмування
66. Загальна математична постановка задачі стохастичного програмування
Головною
умовою побудови та використання
детермінованих моделей є припущення
про те, що всі початкові параметри
задачі мають бути чітко визначеними.
З погляду економіки така умова означає,
що на етапі постановки задачі абсолютно
точною є інформація стосовно всіх
параметрів моделі. Однак загальновідомо,
що економічні системи функціонують і
розвиваються за умов невизначеності,
тобто досить важко, а іноді і неможливо,
мати точні значення деяких параметрів
математичної моделі, особливо коли
прогнозується розвиток процесів у
майбутньому. Фактичні значення можуть
суттєво відрізнятися від тих, які були
взяті за основу при побудові математичних
моделей та визначенні оптимальних
планів, що породжує ризик прийнятих
рішень. Невизначеність може бути різного
ступеня залежно від того, яку інформацію
ми маємо про досліджуваний процес чи
явище. Якщо відомий розподіл відповідних
параметрів, то для прийняття рішень
використовують методи стохастичного
програмування, суть яких полягає в
тому, що відшукуючи оптимальне рішення
,
тобто значення керованих змінних,
необхідно враховувати також вплив ряду
випадкових чинників
,
керувати якими немає можливості.
Наприклад, у разі планування діяльності
сільськогосподарських підприємств є
можливість точно передбачати площі
посівів сільськогосподарських культур,
рівні внесення добрив, поголів’я тварин
(керовані змінні), але кінцевий результат
діяльності у значній мірі залежить
також від погодних умов, податкової та
кредитної політики тощо (некеровані
змінні).
Умовні екстремальні задачі, в яких параметри умов або складові розв’язку – випадкові величини, є предметом стохастичного програмування.
У стохастичному програмуванні частіше, ніж в інших розділах математичного програмування, значні труднощі виникають не лише за розроблення методів розв’язування задач, а також у разі їх постановки. Адже у постановці кожної задачі мають відображатися особливості прийняття рішень за умов невизначеності. Постановка задачі стохастичного програмування істотно залежить від її цільових засад та інформаційної структури.
Типову
задачу математичного програмування в
детермінованій постановці формулюють
так: визначити вектор
,
для компонент
якого:
,
,
.
Якщо функції в даній задачі крім керованих параметрів Х залежать ще і від деяких випадкових величин , то маємо задачу стохастичного програмування:
,
,
,
,
де Ω – простір подій ω.
Залежно
від можливості отримати та врахувати
інформацію стосовно детермінованості
(стохастичності) функцій
,
постановки задач стохастичного
програмування можуть містити:
стохастичні коефіцієнти цільової функції та детерміновані обмеження;
детерміновані коефіцієнти цільової функції та стохастичні вільні члени і коефіцієнти системи обмежень;
стохастичні коефіцієнти цільової функції, вільні члени і коефіцієнти системи обмежень.
Конкретні постановки задач стохастичного програмування мають свою специфіку. Передусім необхідно визначити:
Детермінованим чи випадковим є вектор Х. Якщо вектор Х є детермінованим, то він не залежить від випадкових параметрів моделі. Якщо ж він випадковий, то тоді Х є функцією від ω –
, тобто залежить від випадкових змінних.
Як розуміти максимізацію (мінімізацію) цільової функції – як абсолютну (для всіх значень ) чи як максимізацію її математичного сподівання або деякої іншої ймовірнісної характеристики цієї функції (моди, медіани), або як мінімізацію середнього квадратичного відхилення? Наприклад, що краще мати: платню 500 ± 200 чи 450 ± 50? У першому разі платня може змінюватися в межах від 300 до 700 гривень, а у другому – лише від 400 до 500.
Як виконуються обмеження: абсолютно для всіх чи в середньому, або з допустимими порушеннями, ймовірність яких мала?
При постановці задач стохастичного програмування необхідно виходити не лише з математичних міркувань, а й з економічного змісту та з врахуванням евристичних міркувань. Наприклад, детермінованість чи стохастичність вектора Х зумовлюється сутністю економічних, технологічних процесів тощо. Для сільськогосподарського підприємства, наприклад, вектор, що визначатиме площі посіву сільськогосподарських культур, обов’язково має бути детермінованим. Якщо ж шуканий вектор для того самого підприємства за тих самих умов визначатиме, приміром, обсяги кредитів, то його компоненти мають бути стохастичними величинами, бо достеменно невідомо, чи вони будуть отримані.
Методи розв’язування стохастичних задач поділяють на дві групи – прямі та непрямі.
Прямі
методи використовують для розв’язування
задач стохастичного програмування,
коли існують способи побудови функцій
і
на базі інформації щодо параметра ω.
Непрямими є методи зведення стохастичної
задачі до задачі лінійного чи нелінійного
програмування, тобто перехід до
детермінованого аналога задачі
стохастичного програмування.