Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
i_vse_vse_vse.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.66 Mб
Скачать

50.Графічний метод розв’язування задач нелінійного програмування.

Приклад 8.1. Знайти мінімальне і максимальне значення функції:

за умов:

.

Розв’язання. Область допустимих розв’язків утворює чотирикутник АВСD (рис.8.1).

Рисунок 8.1

Геометрично цільова функція являє собою коло з центром у точці М(2;2), квадрат радіуса якого . Це означає, що її значення буде збільшуватися (зменшуватися) зі збільшенням (зменшенням) радіуса кола. Проведемо з точки М кола різних радіусів. Функція Z має два локальних мак­симуми: точки В(0;6) і С(8;0). Обчислимо значення функціонала в цих точках:

,

.

Оскільки , то точка С(8;0) є точкою глобального максимуму.

Очевидно, що найменший радіус , тоді:

.

Тобто точка М є точкою мінімуму, оскільки їй відповідає найменше можливе значення цільової функції.

Зазначимо, що в даному разі точка, яка відповідає оптимальному плану задачі (мінімальному значенню функціонала), знаходиться всередині багатокутника допустимих розв’язків, що в задачах лінійного програмування неможливо.

Приклад 8.2. Знайти мінімальне значення функції:

за умов:

.

Розв’язування. У даному прикладі множина допустимих розв’язків складається з двох окремих частин, необмежених зверху (рис.8.2).

Рисунок 8.2

Цільова функція аналогічно попередньому випадку є колом з центром у точці М(4;4). Функція Z має два локальних мінімуми: в точці А( ), і в точці В( ).

Значення функціонала в цих точках однакове і дорівнює:

.

Отже, маємо два альтернатив­ні оптимальні плани.

Даний приклад ілюструє ще одну особливість задач нелінійного програмування: на від­міну від задач лінійного програмування багатогранник допустимих розв’язків задачі нелінійного програмування не обов’язково буде опуклою множиною.

Наведемо основні особливості задач нелінійного програмування, що зумовлюють необхідність застосування відповідних методів їх розв’язання.

51. Основні труднощі розв’язування задач нелінійного програмування

Розглянемо основні труднощі розв’язування нелінійних задач.

1.Для лінійних задач можна завжди знайти оптимальний розв’язок універсальним методом – симплексним. При цьому не існує проблеми стосовно доведення існування такого розв’язку, тобто в результаті застосування алгоритму симплексного методу завжди отримують один з таких варіантів відповіді:

а) отримали оптимальний розв’язок;

б) умови задачі суперечливі, тобто розв’язку не існує;

в) цільова функція необмежена, тобто розв’язку також не існує.

Для задач нелінійного програмування не існує універсального методу розв’язання. Для кожного специфічного методу необхідно доводити існування розв’язку задачі та його єдиність, що також є досить складною математичною задачею.

2.Для задач лінійного програмування доведено наявність єдиного екстремуму, що досягається в одній (або кількох одночасно) з вершин багатогранника допустимих розв’язків задачі. Однак у задачах нелінійного програмування існують кілька локальних оптимумів, що потребує пошуку серед них глобального.

На рис.8.4 маємо на відрізку, що зображений, локальні оптимуми у точках глобальний – у точках та .

Рисунок 8.4

Більшість наближених методів уможливлюють, як правило, знаходження локального оптимуму. Можна, звичайно, користуючись простим способом, визначити всі локальні оптимуми, а потім їх зіставленням знайти глобальний. Однак для практичних розрахунків такий метод є неефективним. Часто глобальний оптимум наближені методи «не уловлюють». Наприклад, у разі, коли глобальний оптимум знаходиться досить близько біля локального. Якщо відрізок поділити на десять підвідрізків і глобальний оптимум попаде у відрізок (рис.8.4), а зліва від та справа від крива буде зрос­тати, то глобальний оптимум буде пропущеним.

3.У задачах лінійного програмування точка оптимуму завж­ди була граничною точкою багатогранника допустимих планів. Для нелінійних задач точка, яка визначає оптимальний план, може бути як граничною, так і знаходитися всередині допустимої області розв’язків (планів), що було проілюстровано в прикладі 8.1.

4.Доведено, що множина допустимих планів задачі лінійного програмування завжди є опуклою. У разі, коли система обмежень задачі є нелінійною, вона може визначати множину допустимих розв’язків як неопуклу, або навіть складатися з довільних, не зв’язаних між собою частин (приклад 8.2).

Одним з найпоширеніших прикладів зазначеної особливості є задачі цілочислового програмування. Нагадаємо, що вимога цілочисловості змінних задачі приводить до множини допустимих розв’язків, утвореної окремими точками, що зумовлює розглянуті вище ускладнення відшукання розв’яз­ків такого типу задач.

Кожна із зазначених особливостей задач вимагає застосування специфічних методів пошуку розв’язку, тому безперечно найскладнішими для розв’язування є задачі нелінійного про­грамування, в яких поєднується кілька або всі згадані особ­ливості.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]