
- •Сутність поняття “модель”. Особливості математичної моделі
- •Сутність методології математичного моделювання. Узагальнена схема математичного моделювання
- •Особливості і принципи математичного моделювання
- •Поняття економіко-математичної моделі. Узагальнена схема процесу математичного моделювання економічних процесів.
- •Особливості процесу математичного моделювання економічних систем. Особливості економічних спостережень і вимірів.
- •Практичні завдання економіко-математичного моделювання. Роль математичних методів в економіці.
- •Охарактеризуйте основні етапи економіко-математичного моделювання. Етапи економіко-математичного моделювання
- •8 Основні засади щодо класифікації економіко-математичних моделей. Наведіть приклади та дайте відповідні пояснення.
- •9. Сутність аналітичного та комп’ютерного моделювання.
- •10. Роль прикладних економіко-математичних досліджень.
- •11. Взаємозв’язкок валідації, верифікації та забезпечення довіри до моделі.
- •12. Постановка задачі економіко-математичного моделювання. Сутність понять: «параметри», «змінні», «цільова функція», «система обмежень».
- •14. Предмет математичного програмування. Приклади економічних задач математичного програмування.
- •15. Багатокритеріальна оптимізація економічних систем. Навести відповідні формули.
- •16. Класифікація задач математичного програмування
- •17. Постановка транспортної задачі та методи її розвязання
- •18. Алгоритм розв’язання транспортної задачі методом потенціалів
- •20. Методи побудови першого опорного плану транспортної задачі: мінімальної вартості; апроксимації Фогеля
- •21. Економічна постановка та математична модель задачі лінійного програмування. Основні поняття задачі лінійного програмування
- •22. Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування. Навести відповідні формули.
- •24. Геометрична інтерпретація задач лінійного програмування. Властивості розв’язків задачі лінійного програмування Геометрична інтерпретація задачі лінійного програмування
- •25 Алгоритм графічного методу розв’язування задач лінійного програмування
- •27.Умова оптимальності розв’язку задачі лінійного програмування симплекс-методом. Алгоритм симплексного методу. Навести відповідні формули Оптимальний розв’язок. Критерій оптимальності плану
- •28 Метод штучного базису. Ознака оптимальності плану із штучним базисом. Навести відповідні формули Метод штучного базису (самостійна робота)
- •29 Алгоритм розв’язання розширеної задачі лінійного програмування. Навести відповідні формули
- •31. Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі. Навести відповідні формули
- •32. Економічна інтерпретація прямої задачі лінійного програмування. Економічний зміст двоїстої задачі й двоїстих оцінок
- •33. Перша теорема двоїстості, її економічна інтерпретація. Навести відповідні формули
- •35.Застосування теорем двоїстості в розв’язуванні задач лінійного програмування. Навести відповідні формули см вопр 33,34.
- •37. Аналіз розв’язків лінійних економіко-математичних моделей
- •Основні властивості розв’язків задачі лінійного програмування
- •38. Оцінка рентабельності продукції. Доцільність введення нової продукції. Навести відповідні формули
- •42.Цілочислове програмування. Приклади застосування цілочислових задач в плануванні й управлінні виробництвом. Навести відповідні формули.
- •43. Геометрична інтерпретація задачі цілочислового програмування
- •44.Загальна характеристика методів розв’язування задач цілочислового програмування
- •46. Методи відтинання. Метод Гоморі. Навести відповідні формули.
- •47. Комбінаторні методи. Метод гілок і меж. Навести відповідні формули.
- •48. Наближені методи розв’язання задачі цілочислового лінійного програмування. Метод вектора спаду.
- •49. Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- •50.Графічний метод розв’язування задач нелінійного програмування.
- •51. Основні труднощі розв’язування задач нелінійного програмування
- •52. Алгоритм розв’язування задачі на безумовний екстремум. Визначення типу екстремуму. Навести відповідні формули.
- •53. Метод множників Лагранжа пошуку умовного екстремуму функції. Економічна інтерпретація множників Лагранжа. Навести відповідні формули.
- •54. Визначення типу екстремуму. Матриця Гессе. Навести відповідні формули.
- •55. Сідлова точка та необхідні умови її існування. Навести відповідні формули.
- •56. Визначення опуклої та угнутої функції. Теорема Куна-Таккера. Навести відповідні формули.
- •Теорема Куна-Таккера
- •57. Необхідні та достатні умови існування оптимального плану задачі опуклого програмування.
- •58. Квадратична форма та її властивості.
- •59. Постановка задачі квадратичного програмування та її математична модель.
- •60 Метод розв’язування задач квадратичного програмування
- •61. Градієнтні методи розв’язання задач нелінійного програмування. Метод Франка-Вульфа розв’язування задачі нелінійного програмування. Навести відповідні формули.
- •62. Загальна постановка задачі динамічного програмування. Умови застосування моделі динамічного програмування.
- •63. Принцип оптимальності Беллмана. Багатокроковий процес прийняття рішень.
- •64. Основні етапи складання математичної моделі задачі динамічного програмування.
- •65 Етапи рішення задачі динамічного програмування
- •66. Загальна математична постановка задачі стохастичного програмування
- •67. Особливості математичної постановки задач стохастичного програмування
- •68 Основні поняття теорії ігор
- •Матричні ігри двох осіб Якщо у грі беруть участь два гравці, то така гра називається парною (грою двох осіб). Часто у грі беруть участь багато сторін.
- •69 Зведення матричної гри до задачі лінійного програмування
42.Цілочислове програмування. Приклади застосування цілочислових задач в плануванні й управлінні виробництвом. Навести відповідні формули.
Задачі цілочислового прогр-ня - особливий вид оптимізаційних задач в якому змінні набувають тільки цілих значень. До цілочислового програмування належать також задачі оптимізації, в яких змінні набувають лише двох значень-0 або 1 (бінарні змінні). Умова цілочисловості є по суті нелінійною і може зустрічатися в задачах, що містять як лінійні, так і нелінійні функції. У даному розділі розглянемо задачі математичного програмування, в яких крім умови цілочисловості всі обмеження та цільова функція є лінійними, що мають назву цілочислових задач лінійного програмування.
Загальна цілочислова задача лінійного програмування записується так:
Max(min)F=∑cjxj; j=1,n
за умов:
∑aijxj {≤ = ≥}bi (i=1,m)
xj≥0 (j=1,n) xj - цілі числа
Задача планування виробничої лінії. Розглядається процес функціонування виробничої лінії. Відома схема, яка зображає послідовність робіт для виготовлення k видів продукції (k=1,k). Відомі також: aj - тривалість виконання j-ї операції ; djk - термін для k-го виробу, до якого необхідно завершити операцію j; хj - момент початку j-ї операції; t - тривалість виконання всіх операцій. Допускається, що в будь-який момент на верстаті виконується тільки одна операція. Задача з постійними елементами витрат. Відомо, що витрати на виготовлення будь-якої продукції складаються з двох частин: постійних та змінних витрат. Задача про призначення. Ця задача зводиться до транспортної і може бути розв’язана одним з відомих методів знаходження оптим плану транспортної задачі. Проте такий вид задач належить до задач цілочислового програмування, оскільки їх змінні є бульовими і оптим план може бути знайденим також методами цілочислового програм-ня.
Задача про рюкзак. Найпростішою задачею цілочислового програмування, а саме задачею лише з одним обмеженням, є задача про рюкзак (або ранець). Назва пов’язана з інтерпретацією задачі вибору найкращого складу предметів, що задовольняють певні умови гіпотетичної проблеми туриста щодо вибору для походу оптимальної кількості речей.
Турист може вибирати потрібні речі із списку з n предметів. Відома вага кожного j-го предмета mj (j=1,n). Визначена також цінність кожного виду предметів wj. Максимальна вага всього вантажу в рюкзаку не може перевищувати зазначеного обсягу М. Необхідно визначити, скільки предметів кожного виду турист має покласти в рюкзак, щоб загальна цінність спорядження була максимальною за умови виконання обмеження на вагу рюкзака.
Позначимо через xj – кількість предметів j-го виду в рюкзаку. Тоді математична модель задачі матиме вигляд:
maxF=∑ wj xj (j=1,n)
∑ mj xj≤M
xj≥0 (j=1,n) xj - цілі числа,(j=1,n)
З
адача
оптимального розкрою матеріалів.
На підприємстві здійснюється розкрій
m
різних партій матеріалів у обсягах
bi(i=1,m)
одиниць однакового розміру в кожній
партії. Із матеріалів
усіх партій потрібно виготовити
максимальну кількість комплектів
Z,
у кожен з яких входить p
різних видів окремих частин в кількості
kr
(r=1,p)
одиниць, враховуючи, що кожну одиницю
матеріалу можна розкроїти на окремі
частини n
різними способами, причому у разі
розкрою одиниці i-ої
партії j-им
способом отримуємо aijr
деталей r-го
виду.
Запишемо математичну модель задачі. Позначимо через xij — кількість одиниць матеріалу i-ої партії, що будуть розкроєні j-им способом. Тоді з i-ої партії за j-го способу розкрою отримаємо aijr, xij деталей r-го виду. З усієї ж i-ої партії у разі застосування до неї всіх n способів розкрою отримаємо ∑ aijrxij деталей r-го виду, а з усіх m партій їх буде отримано
.
У кожен комплект має входити kr
(r=1,p)
деталей, тому відношення Zr/kr
(r=1,p)
визначає кількість комплектів, які
можна виготовити з деталей r-го
виду. Кількість повних комплектів для
всіх видів деталей визначається
найменшим з цих відношень.
У разі повного комплекту має виконуватися рівність відношень:
,
звідки p – 1 відношення можна виразити через будь-яке з них, наприклад, через перше:
Zr/kr = Z1/k1 (r=2,p) або Zr=Z1/kr (r=2,p).
Замінивши Zr та Z1 їх значеннями, отримаємо p – 1 обмеження стосовно комплектів:
;
Враховуючи наявну кількість одиниць матеріалу в партіях, запишемо m обмежень щодо ресурсів:
.
(Обмеження щодо використання ресурсів можуть бути рівняннями чи нерівностями залежно від того, повністю чи не повністю необхідно використати наявний обсяг ресурсів).
Всі
мають задовольняти умову невід’ємності:
та цілочисловості.
Отже, необхідно знайти найбільше значення функції:
за обмежень:
,
— цілі
числа
.