
- •Сутність поняття “модель”. Особливості математичної моделі
- •Сутність методології математичного моделювання. Узагальнена схема математичного моделювання
- •Особливості і принципи математичного моделювання
- •Поняття економіко-математичної моделі. Узагальнена схема процесу математичного моделювання економічних процесів.
- •Особливості процесу математичного моделювання економічних систем. Особливості економічних спостережень і вимірів.
- •Практичні завдання економіко-математичного моделювання. Роль математичних методів в економіці.
- •Охарактеризуйте основні етапи економіко-математичного моделювання. Етапи економіко-математичного моделювання
- •8 Основні засади щодо класифікації економіко-математичних моделей. Наведіть приклади та дайте відповідні пояснення.
- •9. Сутність аналітичного та комп’ютерного моделювання.
- •10. Роль прикладних економіко-математичних досліджень.
- •11. Взаємозв’язкок валідації, верифікації та забезпечення довіри до моделі.
- •12. Постановка задачі економіко-математичного моделювання. Сутність понять: «параметри», «змінні», «цільова функція», «система обмежень».
- •14. Предмет математичного програмування. Приклади економічних задач математичного програмування.
- •15. Багатокритеріальна оптимізація економічних систем. Навести відповідні формули.
- •16. Класифікація задач математичного програмування
- •17. Постановка транспортної задачі та методи її розвязання
- •18. Алгоритм розв’язання транспортної задачі методом потенціалів
- •20. Методи побудови першого опорного плану транспортної задачі: мінімальної вартості; апроксимації Фогеля
- •21. Економічна постановка та математична модель задачі лінійного програмування. Основні поняття задачі лінійного програмування
- •22. Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування. Навести відповідні формули.
- •24. Геометрична інтерпретація задач лінійного програмування. Властивості розв’язків задачі лінійного програмування Геометрична інтерпретація задачі лінійного програмування
- •25 Алгоритм графічного методу розв’язування задач лінійного програмування
- •27.Умова оптимальності розв’язку задачі лінійного програмування симплекс-методом. Алгоритм симплексного методу. Навести відповідні формули Оптимальний розв’язок. Критерій оптимальності плану
- •28 Метод штучного базису. Ознака оптимальності плану із штучним базисом. Навести відповідні формули Метод штучного базису (самостійна робота)
- •29 Алгоритм розв’язання розширеної задачі лінійного програмування. Навести відповідні формули
- •31. Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі. Навести відповідні формули
- •32. Економічна інтерпретація прямої задачі лінійного програмування. Економічний зміст двоїстої задачі й двоїстих оцінок
- •33. Перша теорема двоїстості, її економічна інтерпретація. Навести відповідні формули
- •35.Застосування теорем двоїстості в розв’язуванні задач лінійного програмування. Навести відповідні формули см вопр 33,34.
- •37. Аналіз розв’язків лінійних економіко-математичних моделей
- •Основні властивості розв’язків задачі лінійного програмування
- •38. Оцінка рентабельності продукції. Доцільність введення нової продукції. Навести відповідні формули
- •42.Цілочислове програмування. Приклади застосування цілочислових задач в плануванні й управлінні виробництвом. Навести відповідні формули.
- •43. Геометрична інтерпретація задачі цілочислового програмування
- •44.Загальна характеристика методів розв’язування задач цілочислового програмування
- •46. Методи відтинання. Метод Гоморі. Навести відповідні формули.
- •47. Комбінаторні методи. Метод гілок і меж. Навести відповідні формули.
- •48. Наближені методи розв’язання задачі цілочислового лінійного програмування. Метод вектора спаду.
- •49. Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- •50.Графічний метод розв’язування задач нелінійного програмування.
- •51. Основні труднощі розв’язування задач нелінійного програмування
- •52. Алгоритм розв’язування задачі на безумовний екстремум. Визначення типу екстремуму. Навести відповідні формули.
- •53. Метод множників Лагранжа пошуку умовного екстремуму функції. Економічна інтерпретація множників Лагранжа. Навести відповідні формули.
- •54. Визначення типу екстремуму. Матриця Гессе. Навести відповідні формули.
- •55. Сідлова точка та необхідні умови її існування. Навести відповідні формули.
- •56. Визначення опуклої та угнутої функції. Теорема Куна-Таккера. Навести відповідні формули.
- •Теорема Куна-Таккера
- •57. Необхідні та достатні умови існування оптимального плану задачі опуклого програмування.
- •58. Квадратична форма та її властивості.
- •59. Постановка задачі квадратичного програмування та її математична модель.
- •60 Метод розв’язування задач квадратичного програмування
- •61. Градієнтні методи розв’язання задач нелінійного програмування. Метод Франка-Вульфа розв’язування задачі нелінійного програмування. Навести відповідні формули.
- •62. Загальна постановка задачі динамічного програмування. Умови застосування моделі динамічного програмування.
- •63. Принцип оптимальності Беллмана. Багатокроковий процес прийняття рішень.
- •64. Основні етапи складання математичної моделі задачі динамічного програмування.
- •65 Етапи рішення задачі динамічного програмування
- •66. Загальна математична постановка задачі стохастичного програмування
- •67. Особливості математичної постановки задач стохастичного програмування
- •68 Основні поняття теорії ігор
- •Матричні ігри двох осіб Якщо у грі беруть участь два гравці, то така гра називається парною (грою двох осіб). Часто у грі беруть участь багато сторін.
- •69 Зведення матричної гри до задачі лінійного програмування
35.Застосування теорем двоїстості в розв’язуванні задач лінійного програмування. Навести відповідні формули см вопр 33,34.
І т-ма: Якщо одна із спряжених задач має розв’язок то друга задача теж має розв’язок і знач-я цієї ф-ції співпадатимуть. Х*=(x*1,x*2,x*3…x*n);Y*=(y*1,y*2,y*3…y*n); Fmax=F(x*)=>Zmin=Z(y*);Fmax=Zmin; Max прибуток F підпр-во має від реалізації оптим плану х*, однак ту ж суму він отримає від продажу ресурсів за оптим. Цінами у*. ІІ т-ма: При підстановці оптим плану х* в і-те обмеж-я прямої задачі можна отримати 2 варіанти оцінки ресурсів, якщо маємо знак (=), то ресурс викор-ся повністю, він є дефіцитним тобто цінним, його треба поповнювати, його двоїста оцінка є додатнім числом. ІІІ т-ма: Компоненти оптим плану Y*i дають оцінку дефіцитних і недефіц-их ресурсів, а кожне додатнє знач-я двоїстої оцінки характер-є приріст цільової ф-ції F, зумовлю-ий малими змінами на одиницю відповідного запасу дефіцитних ресурсів. В симплекс таблиці знач-я двоїстих оцінок знаходь в останньому перевірочному рядку навпроти баз. змінних прямої задачі.
36. Алгоритм рішення задачі лінійного програмування двоїстим симплексним методом
Двоїсту задачу можна також розв’язати за таблицею, в якій записана пряма, а відшукавши оптимальний план двоїстої задачі, разом з тим отримати розв’язок початкової задачі. Такий спосіб розв’язання ЗЛП має назву двоїстого симплексного методу. Прямий та двоїстий симплексні методи пов’язані між собою.
Нехай необхідно розв’язати задачу лінійного програмування, подану в канонічному виді:
minF=CX (3.60)
AX=B (3.61)
X≥0 (3.62)
Тоді двоїстою до неї буде така задача:
maxZ=BY (3.63)
YA≤C (3.64)
За алгоритмом двоїстого симплексного методу:
як перший опорний план вибирається деякий допустимий розв’язок двоїстої задачі «псевдоплан») і зберігається його допустимість для двоїстої задачі упродовж всіх кроків.
Допустимо, що початковий базис складається з m векторів D=(A1,A2,…,Am ), причому хоча б одна з компонент вектора X=D-1 B=(x1,x2,…xl..xn) від’ємна. Нехай xl<0, однак всі оцінки векторів ∆j=Fj-cj≥0 (j=1,n). На підставі першої теореми двоїстості план двоїстої задачі відшукуємо у вигляді: Y=CбазD-1. Цей план не є оптимальним для прямої задачі, оскільки він не задовольняє умову невід’ємності змінних і не є оптимальним для двоїстої задачі, бо всі оцінки векторів оптимального плану двоїстої задачі мають бути невід’ємними.
Отже, вектор, що відповідає компоненті xl<0, потрібно виключити з базису початкової задачі, а вектор двоїстої задачі, що відповідає від’ємній оцінці, включити до базису двоїстої.
У прямому симплекс-методі спочатку виявляють змінну, яку слід ввести у базис, а в двоїстому симплекс-методі навпаки — спочатку визначають змінну, яку виключають з базису, а потім змінну, яку вводять у базис.
Алгоритм двоїстого симплексного методу:
1. Необхідно звести всі обмеження задачі до виду «», ввести додаткові невід’ємні змінні, визначити початковий базис та перший опорний план X=(b1,b2…bm).
2. Якщо всі оцінки векторів ∆j=Fj-cj≤0 і компоненти вектора-стовпчика «План» =(b1,b2…bm)≥0 для всіх i=1,m, то задача розв’язана. Інакше необхідно вибрати найбільшу за модулем компоненту bi<0 і відповідну змінну xl виключити з базису.
3. Якщо в l-му рядку, що відповідає змінній xl, не міститься жодного aij<0, то ЦФ двоїстої задачі необмежена на багатограннику розв’язків, а початкова задача розв’язку не має. Інакше існують деякі aij<0 і тоді для відповідних стовпчиків визначають аналогічно прямому симплекс-методу оцінки Ө:
Өj=min |∆j/aij| (aij<0), що дає змогу вибрати вектор, який буде включено в базис.
4. Виконавши крок методу повних виключень Жордана—Гаусса, переходять до наступної симплексної таблиці (Переходять до пункту 2).
Зазначимо,
що для задачі знаходження максимального
значення цільової функції за наведеним
алгоритмом необхідно перейти до цільової
функції
,
або дещо змінити сам алгоритм.