
- •Сутність поняття “модель”. Особливості математичної моделі
- •Сутність методології математичного моделювання. Узагальнена схема математичного моделювання
- •Особливості і принципи математичного моделювання
- •Поняття економіко-математичної моделі. Узагальнена схема процесу математичного моделювання економічних процесів.
- •Особливості процесу математичного моделювання економічних систем. Особливості економічних спостережень і вимірів.
- •Практичні завдання економіко-математичного моделювання. Роль математичних методів в економіці.
- •Охарактеризуйте основні етапи економіко-математичного моделювання. Етапи економіко-математичного моделювання
- •8 Основні засади щодо класифікації економіко-математичних моделей. Наведіть приклади та дайте відповідні пояснення.
- •9. Сутність аналітичного та комп’ютерного моделювання.
- •10. Роль прикладних економіко-математичних досліджень.
- •11. Взаємозв’язкок валідації, верифікації та забезпечення довіри до моделі.
- •12. Постановка задачі економіко-математичного моделювання. Сутність понять: «параметри», «змінні», «цільова функція», «система обмежень».
- •14. Предмет математичного програмування. Приклади економічних задач математичного програмування.
- •15. Багатокритеріальна оптимізація економічних систем. Навести відповідні формули.
- •16. Класифікація задач математичного програмування
- •17. Постановка транспортної задачі та методи її розвязання
- •18. Алгоритм розв’язання транспортної задачі методом потенціалів
- •20. Методи побудови першого опорного плану транспортної задачі: мінімальної вартості; апроксимації Фогеля
- •21. Економічна постановка та математична модель задачі лінійного програмування. Основні поняття задачі лінійного програмування
- •22. Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування. Навести відповідні формули.
- •24. Геометрична інтерпретація задач лінійного програмування. Властивості розв’язків задачі лінійного програмування Геометрична інтерпретація задачі лінійного програмування
- •25 Алгоритм графічного методу розв’язування задач лінійного програмування
- •27.Умова оптимальності розв’язку задачі лінійного програмування симплекс-методом. Алгоритм симплексного методу. Навести відповідні формули Оптимальний розв’язок. Критерій оптимальності плану
- •28 Метод штучного базису. Ознака оптимальності плану із штучним базисом. Навести відповідні формули Метод штучного базису (самостійна робота)
- •29 Алгоритм розв’язання розширеної задачі лінійного програмування. Навести відповідні формули
- •31. Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі. Навести відповідні формули
- •32. Економічна інтерпретація прямої задачі лінійного програмування. Економічний зміст двоїстої задачі й двоїстих оцінок
- •33. Перша теорема двоїстості, її економічна інтерпретація. Навести відповідні формули
- •35.Застосування теорем двоїстості в розв’язуванні задач лінійного програмування. Навести відповідні формули см вопр 33,34.
- •37. Аналіз розв’язків лінійних економіко-математичних моделей
- •Основні властивості розв’язків задачі лінійного програмування
- •38. Оцінка рентабельності продукції. Доцільність введення нової продукції. Навести відповідні формули
- •42.Цілочислове програмування. Приклади застосування цілочислових задач в плануванні й управлінні виробництвом. Навести відповідні формули.
- •43. Геометрична інтерпретація задачі цілочислового програмування
- •44.Загальна характеристика методів розв’язування задач цілочислового програмування
- •46. Методи відтинання. Метод Гоморі. Навести відповідні формули.
- •47. Комбінаторні методи. Метод гілок і меж. Навести відповідні формули.
- •48. Наближені методи розв’язання задачі цілочислового лінійного програмування. Метод вектора спаду.
- •49. Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- •50.Графічний метод розв’язування задач нелінійного програмування.
- •51. Основні труднощі розв’язування задач нелінійного програмування
- •52. Алгоритм розв’язування задачі на безумовний екстремум. Визначення типу екстремуму. Навести відповідні формули.
- •53. Метод множників Лагранжа пошуку умовного екстремуму функції. Економічна інтерпретація множників Лагранжа. Навести відповідні формули.
- •54. Визначення типу екстремуму. Матриця Гессе. Навести відповідні формули.
- •55. Сідлова точка та необхідні умови її існування. Навести відповідні формули.
- •56. Визначення опуклої та угнутої функції. Теорема Куна-Таккера. Навести відповідні формули.
- •Теорема Куна-Таккера
- •57. Необхідні та достатні умови існування оптимального плану задачі опуклого програмування.
- •58. Квадратична форма та її властивості.
- •59. Постановка задачі квадратичного програмування та її математична модель.
- •60 Метод розв’язування задач квадратичного програмування
- •61. Градієнтні методи розв’язання задач нелінійного програмування. Метод Франка-Вульфа розв’язування задачі нелінійного програмування. Навести відповідні формули.
- •62. Загальна постановка задачі динамічного програмування. Умови застосування моделі динамічного програмування.
- •63. Принцип оптимальності Беллмана. Багатокроковий процес прийняття рішень.
- •64. Основні етапи складання математичної моделі задачі динамічного програмування.
- •65 Етапи рішення задачі динамічного програмування
- •66. Загальна математична постановка задачі стохастичного програмування
- •67. Особливості математичної постановки задач стохастичного програмування
- •68 Основні поняття теорії ігор
- •Матричні ігри двох осіб Якщо у грі беруть участь два гравці, то така гра називається парною (грою двох осіб). Часто у грі беруть участь багато сторін.
- •69 Зведення матричної гри до задачі лінійного програмування
29 Алгоритм розв’язання розширеної задачі лінійного програмування. Навести відповідні формули
Приклад 5.1. До заданої задачі лінійного програмування записати двоїсту задачу. Розв’язати одну з них симплекс-методом та визначити оптимальний план другої задачі, використовуючи співвідношення першої теореми двоїстості.
max Z = –5x1 + 2x2;
Розв’язання. Перш ніж записати двоїсту задачу, необхідно пряму задачу звести до стандартного вигляду. Оскільки цільова функція F максимізується і всистемі обмежень є нерівності, то їх слід звести до виду « ». Тому перше обмеження задачі помножимо на (–1). Після цього знак нерівності зміниться на протилежний. Отримаємо:
max Z = –5x1 + 2x2;
Тепер за відповідними правилами складемо двоїсту задачу:
min F = –y1 + 5y2;
Оскільки записані задачі симетричні, то будь-яку з них можна розв’язати симплекс-методом. Наприклад, визначимо спочатку оптимальний план прямої задачі. Для цього застосуємо алгоритм симплекс-методу.
1. max Z = – 5x1 + 2x2+ 0x3 + 0x4;
2. Векторна форма запису системи обмежень має вигляд:
,
де
,
,
,
,
.
У системі векторів для утворення початкового одиничного базису відсутній один вектор. Тому введемо штучну змінну в перше обмеження.
3. Розширена задача лінійного програмування буде такою:
max Z = – 5x1 + 2x2+ 0x3 + 0x4 – Мx5;
У цій задачі х4 та х5 – базисні змінні, а х1, х2, х3 – вільні. Нехай х1=х2=х3=0, тоді х4=5; х5=1.
Перший опорний план задачі:
X0=(0; 0; 0; 5; 1), Z0= – M.4. Подальше розв’язування прямої задачі подано у вигляді симплексної таблиці:
З останньої симплекс-таблиці запишемо оптимальний план прямої задачі:
Х*=(0; 5/3; 2/3; 0), Zmax=10/3.
Згідно зі співвідношенням двоїстості за першою теоремою можна зробити висновок, що оптимальний план двоїстої задачі існує і
min F = max Z = 10/3.
Компоненти вектора Y* (оптимальний план двоїстої задачі) визначимо за формулою:
,
де
та міститься в стовпчику «Сбаз»
останньої симплекс-таблиці;
.
Матриця D–1 також міститься в останній симплекс-таблиці у стовпчиках змінних «x5» та «x4», які утворювали початковий базис.
Отже,
,
min F = – 1 0 + 5 2/3 = 10/3.
Застосувавши для розв’язування прямої задачі симплекс-метод, ми знайшли її оптимальний план, а потім визначили оптимальний розв’язок двоїстої задачі за допомогою співвідношень першої теореми двоїстості.
31. Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі. Навести відповідні формули
Кожна задача лінійного програмування пов’язана з іншою, так званою двоїстою задачею. Поняття двоїстості є взаємним. По суті, мова йде про одну і ту ж задачу, але з різних поглядів. двоїста задача збігається з початковою. Тому кожну з них можна вважати прямою, а іншу — двоїстою. Як у прямій, так і у двоїстій задачі використовують один набір початкових даних:bi,(i=1,m), aij,( i=1,m; j=1,n); cj (j=1,n).
ПРАВИЛА:
Вектор обмежень початкової задачі стає вектором коефіцієнтів ЦФ двоїстої задачі і навпаки
Кожному обмеженню початкової задачі відповідає змінна двоїстої і навпаки. причому кількість обмежень дорівнює кількості невідомих прямої задачі.
Правими частинами системи обмежень двоїстої задачі є коефіцієнти при змінних в цільовій функції прямої задачі.
Рядки матриці А (матриці коефіцієнтів при змінних з обмежень прямої задачі) стають стовпцями матриці двоїстої задачі.
Якщо ЦФ прямої задачі задається на пошук найбільшого значення (max), то ЦФ двоїстої задачі — на визначення min, і навпаки
Отже, як правило, кажуть про пару спряжених задач лінійного програмування.
Якщо пряма задача лінійного програмування має вигляд
Z= с1х1 + с2х2 + … + сnxnmax
за умов: а11х1+а12х2…+а1nxn≤b1
а21х1+а22х2…+а2nxn≤b2
… (2.2)
аm1х1+аm2х2…+аmnxn≤bm
xj≥0; …j=1,n
то двоїста задача записується так:
F = b1y1 + b2y2 + … + bmym min
за обмежень
a11y1+a21y2+…+am1ym≥c1
a12y1+a22y2+…+am2ym≥c2
….
a1ny1+a2ny2+…+amnym≥cn
yj≥0 i=1,m
Двоїсті пари ЗЛП бувають симетричні та несиметричні.
У симетричних задачах обмеження прямої та двоїстої задач є нерівностями, а змінні обох задач можуть набувати лише невід’ємних значень.
У несиметричних задачах обмеження прямої задачі можуть бути записані як рівняння, а двоїстої — лише як нерівності. У цьому разі відповідні змінні двоїстої задачі набувають будь-якого значення, не обмеженого знаком.