
- •Сутність поняття “модель”. Особливості математичної моделі
- •Сутність методології математичного моделювання. Узагальнена схема математичного моделювання
- •Особливості і принципи математичного моделювання
- •Поняття економіко-математичної моделі. Узагальнена схема процесу математичного моделювання економічних процесів.
- •Особливості процесу математичного моделювання економічних систем. Особливості економічних спостережень і вимірів.
- •Практичні завдання економіко-математичного моделювання. Роль математичних методів в економіці.
- •Охарактеризуйте основні етапи економіко-математичного моделювання. Етапи економіко-математичного моделювання
- •8 Основні засади щодо класифікації економіко-математичних моделей. Наведіть приклади та дайте відповідні пояснення.
- •9. Сутність аналітичного та комп’ютерного моделювання.
- •10. Роль прикладних економіко-математичних досліджень.
- •11. Взаємозв’язкок валідації, верифікації та забезпечення довіри до моделі.
- •12. Постановка задачі економіко-математичного моделювання. Сутність понять: «параметри», «змінні», «цільова функція», «система обмежень».
- •14. Предмет математичного програмування. Приклади економічних задач математичного програмування.
- •15. Багатокритеріальна оптимізація економічних систем. Навести відповідні формули.
- •16. Класифікація задач математичного програмування
- •17. Постановка транспортної задачі та методи її розвязання
- •18. Алгоритм розв’язання транспортної задачі методом потенціалів
- •20. Методи побудови першого опорного плану транспортної задачі: мінімальної вартості; апроксимації Фогеля
- •21. Економічна постановка та математична модель задачі лінійного програмування. Основні поняття задачі лінійного програмування
- •22. Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування. Навести відповідні формули.
- •24. Геометрична інтерпретація задач лінійного програмування. Властивості розв’язків задачі лінійного програмування Геометрична інтерпретація задачі лінійного програмування
- •25 Алгоритм графічного методу розв’язування задач лінійного програмування
- •27.Умова оптимальності розв’язку задачі лінійного програмування симплекс-методом. Алгоритм симплексного методу. Навести відповідні формули Оптимальний розв’язок. Критерій оптимальності плану
- •28 Метод штучного базису. Ознака оптимальності плану із штучним базисом. Навести відповідні формули Метод штучного базису (самостійна робота)
- •29 Алгоритм розв’язання розширеної задачі лінійного програмування. Навести відповідні формули
- •31. Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі. Навести відповідні формули
- •32. Економічна інтерпретація прямої задачі лінійного програмування. Економічний зміст двоїстої задачі й двоїстих оцінок
- •33. Перша теорема двоїстості, її економічна інтерпретація. Навести відповідні формули
- •35.Застосування теорем двоїстості в розв’язуванні задач лінійного програмування. Навести відповідні формули см вопр 33,34.
- •37. Аналіз розв’язків лінійних економіко-математичних моделей
- •Основні властивості розв’язків задачі лінійного програмування
- •38. Оцінка рентабельності продукції. Доцільність введення нової продукції. Навести відповідні формули
- •42.Цілочислове програмування. Приклади застосування цілочислових задач в плануванні й управлінні виробництвом. Навести відповідні формули.
- •43. Геометрична інтерпретація задачі цілочислового програмування
- •44.Загальна характеристика методів розв’язування задач цілочислового програмування
- •46. Методи відтинання. Метод Гоморі. Навести відповідні формули.
- •47. Комбінаторні методи. Метод гілок і меж. Навести відповідні формули.
- •48. Наближені методи розв’язання задачі цілочислового лінійного програмування. Метод вектора спаду.
- •49. Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- •50.Графічний метод розв’язування задач нелінійного програмування.
- •51. Основні труднощі розв’язування задач нелінійного програмування
- •52. Алгоритм розв’язування задачі на безумовний екстремум. Визначення типу екстремуму. Навести відповідні формули.
- •53. Метод множників Лагранжа пошуку умовного екстремуму функції. Економічна інтерпретація множників Лагранжа. Навести відповідні формули.
- •54. Визначення типу екстремуму. Матриця Гессе. Навести відповідні формули.
- •55. Сідлова точка та необхідні умови її існування. Навести відповідні формули.
- •56. Визначення опуклої та угнутої функції. Теорема Куна-Таккера. Навести відповідні формули.
- •Теорема Куна-Таккера
- •57. Необхідні та достатні умови існування оптимального плану задачі опуклого програмування.
- •58. Квадратична форма та її властивості.
- •59. Постановка задачі квадратичного програмування та її математична модель.
- •60 Метод розв’язування задач квадратичного програмування
- •61. Градієнтні методи розв’язання задач нелінійного програмування. Метод Франка-Вульфа розв’язування задачі нелінійного програмування. Навести відповідні формули.
- •62. Загальна постановка задачі динамічного програмування. Умови застосування моделі динамічного програмування.
- •63. Принцип оптимальності Беллмана. Багатокроковий процес прийняття рішень.
- •64. Основні етапи складання математичної моделі задачі динамічного програмування.
- •65 Етапи рішення задачі динамічного програмування
- •66. Загальна математична постановка задачі стохастичного програмування
- •67. Особливості математичної постановки задач стохастичного програмування
- •68 Основні поняття теорії ігор
- •Матричні ігри двох осіб Якщо у грі беруть участь два гравці, то така гра називається парною (грою двох осіб). Часто у грі беруть участь багато сторін.
- •69 Зведення матричної гри до задачі лінійного програмування
24. Геометрична інтерпретація задач лінійного програмування. Властивості розв’язків задачі лінійного програмування Геометрична інтерпретація задачі лінійного програмування
Розглянемо на площині х1Оx2 сумісну систему лінійних нерівностей:
(3.7)
Рисунок 3.1
Кожна нерівність цієї системи геометрично визначає півплощину з граничною прямою ai1x1 + ai2x2 = bi(i = 1, 2, ...,т).Півплощини перетинаючись, утворюють спільну частину, що є опуклою множиною і являє собою сукупність точок, координати кожної з яких є розв’язком даної системи (рис. 2.1).
Сукупність цих точок (розв’язків) називають багатокутником розв’язків, або областю допустимих планів (розв’язків) задачі лінйного програмування. Це може бути точка (єдиний розв’язок), відрізок, промінь, багатокутник, необмежена багатокутна область.
Якщо в системі обмежень (2.9) буде три змінних, то кожна нерівність геометрично визначатиме півпростір тривимірного простору, граничними площинами котрого будуть ai1x1 + ai2x2 + ai3x3 = bi(i = 1, 2, ...,т), а умови невід’ємності — півпростори з граничними площинами хj = 0 (j = 1, 2, 3), де і — номер обмеження, а j — номер змінної. Якщо система обмежень сумісна, то ці півпростори як опуклі множини, перетинаючись, утворять у тривимірному просторі спільну частину, що називається багатогранником розв’язків. Він може бути точкою, відрізком, променем, багатокутником, багатогранником, багатогранною необмеженою областю.
Нехай у системі обмежень (2.9) кількість змінних більша, ніж три: х1, х2,… хn; тоді кожна нерівність визначає півпростір n-вимірного простору з граничною гіперплощиною аi1x1 + ai2x2 + ai3x3 + … +ainxn = bi (i = 1, 2, ...,т).
Отже, геометрично задача лінійного програмування являє собою відшукання координат такої точки багатогранника розв’язків, при підстановці яких у цільову лінійну функцію остання набирає максимального (мінімального) значення, причому допустимими розв’язками є усі точки багатогранника розв’язків.
Цільову функцію
в п-вимірному просторі основних змінних можна геометрично інтерпретувати як сім’ю паралельних гіперплощин, положення кожної з яких визначається значенням параметра Z.
25 Алгоритм графічного методу розв’язування задач лінійного програмування
Для розв’язування двовимірних задач лінійного програмування, тобто задач з двома змінними, а також деяких тривимірних задач застосовують графічний метод, що ґрунтується на геометричній інтерпретації та аналітичних властивостях задач лінійного програмування.
розв’язати задачу лінійного програмування графічно означає знайти таку вершину многокутника розв’язків, у результаті підставляння координат якої в (2.13) лінійна цільова функція набуває найбільшого (найменшого) значення.
Алгоритм графічного методу розв’язування задач лінійного програмування складається з розглянутих далі кроків.
1. Будуємо прямі лінії, рівняння яких дістаємо заміною в обмеженнях задачі (2.14) знаків нерівностей на знаки рівностей.
2. Визначаємо півплощини, що відповідають кожному обмеженню задачі.
3. Знаходимо многокутник розв’язків задачі лінійного програмування.
4. Будуємо
вектор
,
що задає напрям зростання значень
цільової функції задачі.
5. Будуємо
пряму с1х1 + с2х2
= const, перпендикулярну до вектора
.
6. Переміщуючи пряму с1х1 + с2х2 = const в напрямі вектора (для задачі максимізації) або в протилежному напрямі (для задачі мінімізації), знаходимо вершину многокутника розв’язків, де цільова функція досягає екстремального значення.
7. Визначаємо координати точки, в якій цільова функція набуває максимального (мінімального) значення, і обчислюємо екстремальне значення цільової функції в цій точці.
У разі застосування графічного методу для розв’язування задач лінійного програмування можливі такі випадки.
Цільова функція набуває максимального значення в єдиній вершині А многокутника розв’язків (рис. 2.2).
Максимального значення цільова функція досягає в будь-якій точці відрізка АВ (рис. 2.3). Тоді задача лінійного програмування має альтернативні оптимальні плани.
26. Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний). Побудова початкового опорного плану задачі лінійного програмування, перехід до іншого опорного плану за допомогою метода Жордана-Гауса. Навести відповідні формули
Вектор Х=(х1,х2,...,хn), координати якого задовольняють систему обмежень та умови невід’ємності змінних, наз. допустимим планом ЗЛП. Допустимий план Х=(х1,х2,..., хn) назив. опорним планом ЗЛП, якщо він задов-яє не менше, ніж m лінійно незалежних обмежень системи обмежень у вигляді строгих рівностей, а також обмеж-я щодо невід’ємності змінних. Допустимий план Х* = (х1*, х2*,..., хn*), за якого цільова функція досягає мін. чи макс. значення, наз. оптимальним планом ЗЛП.
Опорний план називається невиродженим, задовольняє точно п лінійно незалежних обмежень — строгих рівностей. У противному разі опорний план є виродженим.
Розглянемо задачу лінійного програмування, записану в канонічній формі
maxF= с1х1 + с2х2 + … + сnxn
за умов: а11х1+а12х2…+а1nxn=b1
а21х1+а22х2…+а2nxn=b2
…
аm1х1+аm2х2…+аmnxn=bm
xj≥0; (j=1,2..n )
Система обмежень (4.2) у векторній формі матиме вигляд:
, (4.4)
де
,
– лінійно незалежні одиничні вектори
m-вимірного
простору, що утворюють одиничну матрицю
і становлять базис цього простору. Тому
в розкладі (4.4) базисними змінними будуть
,
а інші змінні – вільні. Прирівняємо
всі вільні змінні до нуля, тобто
.
Оскільки
,
а вектори
– одиничні, то отримаємо один із
розв’язків системи обмежень (4.2):
(4.5)
тобто допустимий план.
Такому плану відповідає розклад
(4.6)
де
— лінійно незалежні вектори і за
властивістю 3 розв’язків задачі
лінійного програмування (п.3.4) план
є кутовою
точкою багатогранника розв’язків, а
отже, може бути початковим
опорним планом.
(См.вопр.27)Визначення першого опорного плану починають із запису ЗЛП в канонічній формі. Якщо в умові задачі присутні обмеження-нерівності, то перетворення їх на рівняння виконується за допомогою додаткових змінних, які вводяться до лівої частини обмежень типу «≤» зі знаком «+», а до обмежень типу «≥» — зі знаком «–». У ЦФ задачі додаткові змінні мають коефіцієнт нуль.
Після зведення задачі до канонічного вигляду її записують у векторній формі. За означенням опорного плану задачі лінійного програмування його утворюють т одиничних лінійно незалежних векторів, які становлять базис т-вимірного простору (де т — кількість обмежень у задачі лінійного програмування).
На цьому етапі розв’язування задачі можливі такі випадки:після запису задачі у векторній формі в системі обмежень
є необхідна кількість одиничних векторів. Тоді початковий опорний план визначається без додаткових дій;
немає необхідної кількості одиничних незалежних векторів. Тоді для побудови першого опорного плану застосовують метод штучного базису. Ідея його полягає в тому, що відсутні одиничні вектори можна дістати, увівши до відповідних обмежень деякі змінні з коефіцієнтом +1, які називаються штучними. У цільовій функції задачі лінійного програмування штучні змінні мають коефіцієнт +М (для задачі на min) або –М (для задачі на max), де М — досить велике додатне число.
Визначені одиничні лінійно незалежні вектори утворюють базис, і змінні задачі, що відповідають їм, називають базисними, а всі інші змінні — вільними. Їх прирівнюють до нуля та з кожного обмеження задачі визначають значення базисних змінних. У такий спосіб отримують початковий опорний план задачі лінійного програмування.
Перехід від одного опорного плану до іншого виконується зміною базису, тобто виключенням з нього деякої змінної та введенням замість неї нової з числа вільних змінних задачі.
Змінна, яка включається до нового базису, відповідає тій оцінці Zj-Cj, що не задовольняє умову оптимальності. Якщо таких оцінок кілька, серед них вибирають найбільшу за абсолютною величиною і відповідну їй змінну вводять до базису. Припустимо, що індекс зазначеної змінної j = k. Відповідний стовпчик симплексної таблиці називають напрямним.
Для
визначення змінної, що має бути виключена
з базису, знаходять для всіх додатних
aik
напрямного стовпчика величину
.
Вибирають найменше значення θ, яке
вказує на змінну, що виводиться з базису.
Припустимо, що це виконується для
.
Відповідний рядок симплексної таблиці
називатиметься напрямним.
Перетином напрямного стовпчика та напрямного рядка визначається число симплексної таблиці ark, яке називають розв’язувальним елементом. За допомогою елемента ark і методу Жордана—Гаусса розраховують нову симплексну таблицю.
за правилом прямокутника.
Щоб визначити будь-який елемент нової таблиці за цим правилом, необхідно в попередній симплексній таблиці скласти умовний прямокутник, вершини якого утворюються такими числами:
1 — розв’язувальний елемент;
2 — число, що стоїть на місці елемента нової симплексної таблиці, який ми маємо розрахувати;
3 та 4 — елементи, що розміщуються в двох інших протилежних вершинах умовного прямокутника.
Необхідний елемент нової симплекс-таблиці визначають так:
Далі ітераційний процес повторюють доти, доки не буде визначено оптимальний план задачі.
???Перехід від одного опорного плану до іншого
Оскільки є базисом m-вимірного простору, то кожен з векторів співвідношення (4.5) може бути розкладений за цими векторами базису, причому у єдиний спосіб:
Розглянемо
такий розклад для довільного небазисного
вектора, наприклад, для
:
(4.7)
Припустимо,
що у виразі (4.7) існує хоча б один додатний
коефіцієнт
.
Введемо
деяку поки що невідому величину
,
помножимо на неї обидві частини рівності
(4.7) і віднімемо результат з рівності
(4.6). Отримаємо:
(4.8)
Отже, вектор
є
планом задачі у тому разі, якщо його
компоненти невід’ємні. За допущенням
,
отже, ті компоненти вектора
,
в які входять
,
будуть невід’ємними, тому необхідно
розглядати лише ті компоненти, які
містять додатні
.
Тобто необхідно знайти таке значення
,
за якого для всіх
буде виконуватися умова невід’ємності
плану задачі:
(4.9)
З
(4.9) отримуємо, що для шуканого
має виконуватися умова
.
Отже, вектор
буде планом задачі для будь-якого ,
що задовольняє умову:
,
де мінімум знаходимо для тих i, для яких .
Опорний
план не може містити більше ніж m
додатних компонент, тому в плані Х1
необхідно перетворити в нуль хоча б
одну з компонент. Допустимо, що
для деякого значення і,
тоді відповідна компонента плану
Х1перетвориться
в нуль. Нехай це буде перша компонента
плану, тобто:
.
Підставимо
значення
у вираз (4.8):
,
якщо
позначити
,
,
то рівняння можна подати у вигляді:
,
якому відповідає такий опорний план:
.
Для
визначення наступного опорного плану
необхідно аналогічно продовжити процес:
будь-який вектор, що не входить у базис,
розкласти за базисними векторами, а
потім визначити таке
,
для якого один з векторів виключається
з базису.
Отже, узагальнюючи розглянутий процес, можемо висновувати: визначення нових опорних планів полягає у виборі вектора, який слід ввести в базис, і вектора, який необхідно вивести з базису. Така процедура відповідає переходу від одного базису до іншого за допомогою методу Жордана-Гаусса.
Необхідно
зазначити, що для випадку, коли вектор
підлягає включенню в базис, а в його
розкладі (4.7) всі
,
то, очевидно, не існує такого значення
,
яке виключало б один з векторів. У такому
разі план
містить m+1
додатних компонент, отже, система
векторів
буде лінійно залежною і визначає не
кутову точку багатогранника розв’язків.
Функціонал не може в ній набирати
максимального значення. Це означає, що
функціонал є необмеженим на багатограннику
розв’язків.