
- •Сутність поняття “модель”. Особливості математичної моделі
- •Сутність методології математичного моделювання. Узагальнена схема математичного моделювання
- •Особливості і принципи математичного моделювання
- •Поняття економіко-математичної моделі. Узагальнена схема процесу математичного моделювання економічних процесів.
- •Особливості процесу математичного моделювання економічних систем. Особливості економічних спостережень і вимірів.
- •Практичні завдання економіко-математичного моделювання. Роль математичних методів в економіці.
- •Охарактеризуйте основні етапи економіко-математичного моделювання. Етапи економіко-математичного моделювання
- •8 Основні засади щодо класифікації економіко-математичних моделей. Наведіть приклади та дайте відповідні пояснення.
- •9. Сутність аналітичного та комп’ютерного моделювання.
- •10. Роль прикладних економіко-математичних досліджень.
- •11. Взаємозв’язкок валідації, верифікації та забезпечення довіри до моделі.
- •12. Постановка задачі економіко-математичного моделювання. Сутність понять: «параметри», «змінні», «цільова функція», «система обмежень».
- •14. Предмет математичного програмування. Приклади економічних задач математичного програмування.
- •15. Багатокритеріальна оптимізація економічних систем. Навести відповідні формули.
- •16. Класифікація задач математичного програмування
- •17. Постановка транспортної задачі та методи її розвязання
- •18. Алгоритм розв’язання транспортної задачі методом потенціалів
- •20. Методи побудови першого опорного плану транспортної задачі: мінімальної вартості; апроксимації Фогеля
- •21. Економічна постановка та математична модель задачі лінійного програмування. Основні поняття задачі лінійного програмування
- •22. Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування. Навести відповідні формули.
- •24. Геометрична інтерпретація задач лінійного програмування. Властивості розв’язків задачі лінійного програмування Геометрична інтерпретація задачі лінійного програмування
- •25 Алгоритм графічного методу розв’язування задач лінійного програмування
- •27.Умова оптимальності розв’язку задачі лінійного програмування симплекс-методом. Алгоритм симплексного методу. Навести відповідні формули Оптимальний розв’язок. Критерій оптимальності плану
- •28 Метод штучного базису. Ознака оптимальності плану із штучним базисом. Навести відповідні формули Метод штучного базису (самостійна робота)
- •29 Алгоритм розв’язання розширеної задачі лінійного програмування. Навести відповідні формули
- •31. Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі. Навести відповідні формули
- •32. Економічна інтерпретація прямої задачі лінійного програмування. Економічний зміст двоїстої задачі й двоїстих оцінок
- •33. Перша теорема двоїстості, її економічна інтерпретація. Навести відповідні формули
- •35.Застосування теорем двоїстості в розв’язуванні задач лінійного програмування. Навести відповідні формули см вопр 33,34.
- •37. Аналіз розв’язків лінійних економіко-математичних моделей
- •Основні властивості розв’язків задачі лінійного програмування
- •38. Оцінка рентабельності продукції. Доцільність введення нової продукції. Навести відповідні формули
- •42.Цілочислове програмування. Приклади застосування цілочислових задач в плануванні й управлінні виробництвом. Навести відповідні формули.
- •43. Геометрична інтерпретація задачі цілочислового програмування
- •44.Загальна характеристика методів розв’язування задач цілочислового програмування
- •46. Методи відтинання. Метод Гоморі. Навести відповідні формули.
- •47. Комбінаторні методи. Метод гілок і меж. Навести відповідні формули.
- •48. Наближені методи розв’язання задачі цілочислового лінійного програмування. Метод вектора спаду.
- •49. Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- •50.Графічний метод розв’язування задач нелінійного програмування.
- •51. Основні труднощі розв’язування задач нелінійного програмування
- •52. Алгоритм розв’язування задачі на безумовний екстремум. Визначення типу екстремуму. Навести відповідні формули.
- •53. Метод множників Лагранжа пошуку умовного екстремуму функції. Економічна інтерпретація множників Лагранжа. Навести відповідні формули.
- •54. Визначення типу екстремуму. Матриця Гессе. Навести відповідні формули.
- •55. Сідлова точка та необхідні умови її існування. Навести відповідні формули.
- •56. Визначення опуклої та угнутої функції. Теорема Куна-Таккера. Навести відповідні формули.
- •Теорема Куна-Таккера
- •57. Необхідні та достатні умови існування оптимального плану задачі опуклого програмування.
- •58. Квадратична форма та її властивості.
- •59. Постановка задачі квадратичного програмування та її математична модель.
- •60 Метод розв’язування задач квадратичного програмування
- •61. Градієнтні методи розв’язання задач нелінійного програмування. Метод Франка-Вульфа розв’язування задачі нелінійного програмування. Навести відповідні формули.
- •62. Загальна постановка задачі динамічного програмування. Умови застосування моделі динамічного програмування.
- •63. Принцип оптимальності Беллмана. Багатокроковий процес прийняття рішень.
- •64. Основні етапи складання математичної моделі задачі динамічного програмування.
- •65 Етапи рішення задачі динамічного програмування
- •66. Загальна математична постановка задачі стохастичного програмування
- •67. Особливості математичної постановки задач стохастичного програмування
- •68 Основні поняття теорії ігор
- •Матричні ігри двох осіб Якщо у грі беруть участь два гравці, то така гра називається парною (грою двох осіб). Часто у грі беруть участь багато сторін.
- •69 Зведення матричної гри до задачі лінійного програмування
20. Методи побудови першого опорного плану транспортної задачі: мінімальної вартості; апроксимації Фогеля
Ідея методу мінімальної вартості полягає в тому, що на кожному кроці заповнюють клітинку таблиці, яка має найменшу вартість перевезення одиниці продукції. Такі дії повторюють доти, доки не буде розподілено всю продукцію між постачальниками та споживачами.
Складемо за допомогою цього методу план розглянутої задачі (табл. 5.3).
Найменшу вартість мають перевезення, які здійснюються від А2 до В3 та від А3 до В2 (ціна перевезення одиниці продукції — 1 ум.од.). Заповнимо будь-яку з них, наприклад, А2В3. Оскільки постачальник має 60 одиниць продукції, а споживач потребує саме такої її кількості, то в клітину А2В3 ставимо значення 60. У такий спосіб запаси другого постачальника повністю вичерпані, а потреби третього споживача повністю задоволені. Також мінімальною є вартість перевезень від третього постачальника до другого споживача, тому заповнимо також клітину А3В2.
З клітинок таблиці, що залишились незаповненими, вибираємо наступне мінімальне значення вартості перевезень, яке дорівнює 2 ум. од. — для клітин А1В3, А2В4, А3В1 та А3В4. Заповнення клітин А2В4 та А1В3 неможливе, оскільки постачальник А2 вже повністю вичерпав власний обсяг запасів, задовольняючи потреби споживача В3, а споживач В3 повністю задовольнив свої потреби. Отже, можна заповнити тільки клітину А3В1 чи А3В4. Заповнимо А3В1. Обсяг запасів а3 = 90, причому 50 одиниць продукції вже надано другому споживачеві. Отже, маємо залишок 90 – 50 = 40, а потреби b1 = 110, тому від третього постачальника до першого споживача плануємо перевезти 40 одиниць продукції. Тепер у клітину А3В4 не можна записати будь-який обсяг постачання, оскільки запаси третього постачальника вже повністю вичерпані.
Знову вибираємо найменшу вартість для клітин таблиці, що залишилися пустими, і продовжуємо процес доти, поки всі запаси не будуть розподілені, а потреби — задоволені.
Таблиця 5.3
b ai |
b1 = 110 |
b2 = 50 |
b3 = 60 |
b4 = 80 |
а1 = 150 |
4 70 |
4 |
2 |
5 80 |
а2 = 60 |
5 |
3 |
1 60 |
2 |
а3 = 90 |
2 40 |
1 50 |
4 |
2 |
В результаті таких міркувань отримали початковий опорний план, загальна вартість перевезень для якого становить:
(ум.
од.).
Значення цільової функції менше за попередній варіант, значить цей план ближчий до оптимального.
Метод апроксимації Фогеля. За цим методом на кожному кроці визначають різницю між двома найменшими вартостями в кожному рядку і стовпчику транспортної таблиці. Ці різниці записують у спеціально відведених місцях таблиці — знизу та справа у кілька рядків та стовпчиків, що відповідають крокам заповнення таблиці. З-поміж усіх різниць вибирають найбільшу і у відповідному рядку чи стовпчику заповнюють клітинку з найменшою вартістю. Якщо ж однакових найбільших різниць кілька, то вибирають будь-який відповідний рядок або стовпчик. Коли залишається незаповненим лише один рядок або стовпчик, то обчислення різниць припиняють, а таблицю продовжують заповнювати за методом мінімальної вартості. Даний метод побудови опорного плану враховує не лише маршрути з мінімальними витратами перевезень продукції, але й співвідношення витрат у рядку чи стовпчику, тобто розраховується наскільки, може збільшитися вартість постачання на наступних кроках процедури, якщо не здійснити на поточному кроці постачання в клітину з мінімальною вартістю.Метод апроксимації Фогеля дає змогу особливо для задач великих розмірностей скласти найкращий опорний план. Ефективність методу апроксимації Фогеля, як вже згадувалось, є очевидною для задач більшої розмірності.
Зазначимо, що ефективність наведених методів можна оцінювати лише в середньому, оскільки можлива ситуація, що методом мінімальної вартості отримано опорний план транспортної задачі кращий, ніж методом подвійної переваги.