
- •1. Цитоплазма и внутриклеточные структуры. Рибосомы и включения бактериальной клетки
- •3.Отличия в организации и функционировании прокариотической и эукариотической клеток.
- •4.Грибы. Fungi
- •7.Клеточная стенка
- •8 Цитоплазматическая мембрана, ее структура и функции
- •9 Поверхностные структуры прокариот (клеточная стенка, капсулы, жгутики)
- •10 Генетический аппарат бактерий
- •11 Морфологические формы бактерий
- •12. Методы исследования м/о
- •13 Смотри 3
- •16 Литотрофные микроорганизмы
- •17.Отличия двух типов фотосинтеза.
- •18. Эксперименты Пастера и значение его работ в выяснении роли м.О. В пророде.
- •20 Визначення робіт Коха для розвитку медичної мікробіології.
- •23 Характеристика простейших.
- •25. Организация, состав и особенности функционирования прокариотической клетки
- •26.Регуляція метаболізму у бактерій.
- •27 Кривaя роста бактерий. Особенности отдельных фаз, параметры роста
- •30 Сучасні методи ідентифікації бактерій.
- •31 Цисты и споры
- •38 Фотосинтез цианобактерий.
- •42. Механизмы циклического фосфорилирования.
- •45 Cпиртовое брожение,химизм,возбудители.
- •46 Cинтез нуклеотидов у бактерий.
- •47 Цикл Арнона у автотрофов
- •48 Синтез жк и глицерина
- •50 Механизм транспорта питательных веществ в бактериальные клетки.
- •52 Автотрофная фиксация со2 в цикле Кальвина
- •53 Функционирование дыхательной цепи у прокариот. Процессы аеробного и анаеробного дыхания
- •58 Трансформация энергии света у фототрофов. Строение фотосинтетического аппарата
- •59 Энергетический метаболизм
- •Энергетический обмен микробов. Способы получения энергии - брожение, дыхание. Типы дыхания бактерий
- •60 Использование элергии неорганических субстратов литотрофами.
- •61 Общая схема энергетического обмена гетеротрофов.
- •62 Характеристика метаболического пути по схеме Энтнера-Дудорова.
- •64. Спонтанная мутационная изменчивость у прокариот.
- •65 Мутагенные факторы химической, физической и биологической природы.
- •66 Механизм репликации днк у прокариот. Гипотеза репликона.
- •67 Генетическая трансформация у бактерий.
- •68 Специфічна трансдукція у бактерій
- •69.Перетворення м. О. Сполук азоту.
- •70 Общая трансдукция у бактерий.
- •71. Конъюгация у бактерий. Пол у бактерий. Построение генетических карт.
- •72. Спектр и механизм биологического действия антибиотиков.
- •73 Формы и функции взаимоотношений м/о в природе.
- •75. Мікробіологічні перетворення сполук сірки.
- •76.Понятие про антибиотики . Основные свойства, происхождение, классификация, механизм действия.
- •77. Биотехнология получения химических веществ. Типичная схема микробиологического производства.
- •79 Пробиотики та пребиотики .Механизм действия на организм.
- •80 Характеристика анаэробного фотосинтеза
- •81 Значення ауксотрофних мутантів у геномі бактерій.
- •82. Умеренные фаги и их роль в передаче генетической информации.
- •83 Конъюгация у бактерий.
- •84 Механизмы транскрипции у прокар.
- •85 Классификация мутаций у бактерий. Мутагенные факторы.
- •86 Построение генетической карты бактерий.
- •87 Роль бактерий в круговороте железа и марганца. Роль м/о в геологических процессах
- •88 Значение компетентности. Механизм поглощения днк при трансформации.
- •89. Антибиотики – ингибиторы синтеза клеточной стенки, которые нарушают функции мембран.
- •90. Новые направления в учении про антибиотики. Получение полусинт. Преп. Их особенности и перспективы испол в медицине.
- •91. Спонтанные и индуцированные мутации, частота возникновения и роль в эволюционном процессе.
38 Фотосинтез цианобактерий.
Перенос по цепи переносчиков включает ряд окислительно-восстановительных реакций. Важно заметить, что при окислительно-восстановительных реакциях происходит перенос либо протонов и электронов, либо только электронов. При этом молекула, отдающая протон или электрон, окисляется, а молекула, воспринимающая протон или электрон, восстанавливается. Различают два типа потока электронов — циклический и нециклический. При циклическом потоке электроны, переданные от молекулы хлорофилла первичному акцептору, возвращаются к ней обратно. При нециклическом потоке происходит фотоокисление воды и передача электрона от воды к НАДФ. Выделяемая в ходе окислительно-восстановительных реакций энергия частично используется на синтез АТФ. Цианобактерии - фототрофные прокариоты, использующие для своей жизнедеятельности энергию света, причем они осуществляют оксигенный фотосинтез, то есть синтезируют органическое вещество из углекислого газа и воды, при этом освобождается молекулярный кислород. Это единственные прокариоты, способные к оксигенному фотосинтезу. На первом этапе происходит поглощение квантов света пигментами, их переход в возбуждённое состояние и передача энергии к другим молекулам фотосистемы. На втором этапе происходит разделение зарядов в реакционном центре, перенос электронов по фотосинтетической электронотранспортной цепи, что заканчивается синтезом АТФ и НАДФН. Первые два этапа вместе называют светозависимой стадией фотосинтеза. Третий этап происходит уже без обязательного участия света и включает в себя биохимические реакции синтеза органических веществ с использованием энергии, накопленной на светозависимой стадии. Чаще всего в качестве таких реакций рассматривается цикл Кальвина и глюкогенез, образование сахаров и крахмала из углекислого газа воздуха.
Первые процессы фотосинтеза у цианобактерий появились ещё в архейскую эру.
39 Условия культивирования, параметры размножения.
Для культивирования бактерий используют питательные среды, к которым предъявляется ряд требований.
1. Питательность. Бактерии должны содержать все необходимые питательные вещества.
2. Изотоничность. Бактерии должны содержать набор солей для поддержания осмотического давления, определенную концентрацию хлорида натрия.
3. Оптимальный рН (кислотность) среды. Кислотность среды обеспечивает функционирование ферментов бактерий; для большинства бактерий составляет 7,2–7,6.
4. Оптимальный электронный потенциал, свидетельствующий о содержании в среде растворенного кислорода. Он должен быть высоким для аэробов и низким для анаэробов.
5. Прозрачность (чтобы был виден рост бактерий, особенно для жидких сред).
6. Стерильность.
Рост бактерий – увеличение бактериальной клетки в размерах без увеличения числа особей в популяции.
Размножение бактерий – процесс, обеспечивающий увеличение числа особей в популяции. Бактерии характеризуются высокой скоростью размножения.
Бактерии размножаются поперечным бинарным делением.
На плотных питательных средах бактерии образуют скопления клеток – колонии. На жидких средах рост бактерий характеризуется образованием пленки на поверхности питательной среды, равномерного помутнения или осадка.
Фазы размножение бактериальной клетки на жидкой питательной среде:
1) начальная стационарная фаза(то количество бактерий, которое попало в питательную среду и в ней находится);
2) лаг-фаза (фаза покоя) (начинается активный рост клеток, но активного размножения еще нет);
3) фаза логарифмического размножения (активно идут процессы размножения клеток в популяции);
4) максимальная стационарная фаза (бактерии достигают максимальной концентрации; количество погибших бактерий равно количеству образующихся);
5) фаза ускоренной гибели.
Под питанием понимают процессы поступления и выведения питательных веществ в клетку и из клетки.
Среди необходимых питательных веществ выделяют органогены (углерод, кислород, водород, азот, фосфор, калий, магний, кальций).
40
41 Процесс трансляции у бактерий Синтез белка является основой жизнедеятельности клетки. Для осуществления этого процесса в клетках всех без исключения организмов имеются специальные органеллы — рибосомы. Механизмы трансляции прокариот и эукариот существенно отличаются, поэтому многие вещества, подавляющие прокариотическую трансляцию, в значительно меньшей степени действуют на трансляцию высших организмов, что позволяет использовать их в медицинской практике как антибактериальные средства безопасные для организма млекопитающих.
Процесс трансляции разделяют на
1.инициацию — узнавание рибосомой стартового кодона и начало синтеза.
2.элонгацию — собственно синтез белка.
3.терминацию — узнавание терминирующего кодона (стоп-кодона) и отделение продукта.
Инициация трансляции предусматривает узнавание рибосомой кодона инициатора и привлечение инициаторной аминоацил-тРНК. Процесс инициации обеспечивается специальными белками — факторами инициации. прокариотические рибосомы потенциально способны находить стартовый кодон и инициировать синтез на любых участках мРНК. Кодоны инициаторы АУГ, ГУГ. Факторы инициации F1 – вызывает разделение рибосом на субъединицы, F2 стабилизирует связь, F3 связь инициирует. На стадии элонгации происходит последовательное наращивание полипептидной цепи по одной аминокислоте в строгом соответствии с последовательностью триплетов (кодонов) в молекуле мРНК. Терминация — окончание синтеза белка, осуществляется, когда в сайте рибосомы оказывается один из стоп- кодонов.