
- •Передмова
- •1. Програма навчальної дисципліни опис навчальної дисципліни
- •Інструментальні:
- •2. Зміст навчальної дисципліни
- •Змістовий модуль 2 диференціальне числення функції однієї змінної та його застосування в економіці
- •Змістовий модуль 3 диференціальне числення функції багатьох змінних та його застосування в економіці
- •Змістовий модуль 4 інтегрування функцій. Диференціальні та різницеві рівняння
- •Тема 13. Економічна динаміка та її моделювання: диференціальні та різницеві рівняння
- •Змістовий модуль 5 ряди та їх застосування. Елементи математичної економіки
- •Тема 14. Ряди та їх застосування
- •Модуль 2. Теорія ймовірностей і математична статистика змістовий модуль 1. Теорія ймовірностей
- •Змістовий модуль 2. Математична статистика
- •3. Методичні рекомендації до самостійної роботи
- •План вивчення теми
- •Методичні рекомендації до самостійної роботи
- •Тема 2. Загальна теорія систем лінійних алгебраїчних рівнянь
- •План вивчення теми
- •Методичні рекомендації до самостійної роботи
- •Тема 3. Елементи матричного аналізу
- •План вивчення теми
- •Методичні рекомендації до самостійної роботи
- •Тема 4. Елементи векторної алгебри та аналітичної геометрії
- •План вивчення теми
- •Методичні рекомендації до самостійної роботи
- •Тема 5. Елементи теорії границь
- •План вивчення теми
- •Методичні рекомендації до самостійної роботи
- •Тема 6. Диференціальне числення функції однієї змінної
- •План вивчення теми
- •Методичні рекомендації до самостійної роботи
- •Тема 7. Дослідження функцій та побудова їх графіків
- •План вивчення теми
- •Методичні рекомендації до самостійної роботи
- •Тема 8. Граничний (маргінальний) аналіз
- •План вивчення теми
- •Методичні рекомендації до самостійної роботи
- •Тема 9. Основні поняття функції багатьох змінних та їх інтерпретація в економічній теорії.
- •План вивчення теми
- •Методичні рекомендації до самостійної роботи
- •Тема 10. Диференційованість функцій багатьох змінних
- •План вивчення теми
- •Методичні рекомендації до самостійної роботи
- •Тема 11. Екстремум та умовний екстремум функції багатьох змінних
- •План вивчення теми
- •Методичні рекомендації до самостійної роботи
- •Тема 12. Інтегральне числення
- •План вивчення теми
- •Методичні рекомендації до самостійної роботи
- •Тема 13. Економічна динаміка та її моделювання: диференціальні та різницеві рівняння
- •План вивчення теми
- •Методичні рекомендації до самостійної роботи
- •Тема 14. Ряди та їх застосування
- •План вивчення теми
- •Методичні рекомендації до самостійної роботи
- •Тема 15. Елементи фінансової математики та математичної економіки
- •План вивчення теми
- •Методичні рекомендації до самостійної роботи
- •4. Методичні рекомендації до практичних занять
- •Практичне заняття №1
- •План заняття
- •Методичні рекомендації до практичного заняття
- •Приклади
- •Завдання
- •План заняття
- •Методичні рекомендації до практичного заняття
- •Система координат
- •Декартова система координат
- •Нехай задані вектори в прямокутній системі координат
- •Приклади
- •Завдання
- •План заняття
- •Методичні рекомендації до практичного заняття
- •Приклади
- •Завдання
- •План заняття
- •Методичні рекомендації до практичного заняття
- •Приклади
- •Завдання
- •Література [1,2,4] практичне заняття № 2
- •План заняття
- •Методичні рекомендації до практичного заняття
- •Приклади
- •Завдання
- •Методичні рекомендації до практичного заняття
- •Приклади
- •Завдання
- •Змістовий модуль іv. Інтегрування функцій. Диференціальні та різницеві рівняння
- •План заняття
- •Методичні рекомендації до практичного заняття
- •Приклади
- •Завдання
- •План заняття
- •Методичні рекомендації до практичного заняття
- •Приклади
- •Завдання
- •План заняття
- •Методичні рекомендації до практичного заняття
- •Приклад
- •Завдання
- •Література [1,2,4]
- •5. Завдання для домашньої контрольної роботи загальні вимоги до виконання домашньої контрольної роботи
- •I семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •І семестр
- •6. Підсумковий контроль Екзаменаційні питання з розділу "Вища математика" (модуль 1) дисципліни "Математика для економістів"
- •7. Список рекомендовоної літератури
- •Математика для економістів
Змістовий модуль 3 диференціальне числення функції багатьох змінних та його застосування в економіці
ТЕМА 9. Основні поняття функції багатьох змінних та їх інтерпретація в економічній теорії
Функція багатьох змінних. Область визначення. Інтерпретація в економіці: функція корисності, виробничі функції.
ТЕМА 10. Диференційованість функції багатьох змінних
Частинні похідні. Повна похідна. Повний диференціал. Застосування повного диференціала в наближених обчисленнях. Похідна складної та заданої неявно функції. Похідна за напрямом. Градієнт функції та його властивості. Поверхні та лінії рівня. Лінія та поверхня байдужості в економічній теорії споживання. Ізокванта випуску в теорії виробника..
ТЕМА 11. Екстремум та умовний екстремум функції багатьох змінних
Дослідження функції на екстремум. Найбільше та найменше значення функції в замкненій області. Умовний екстремум функції багатьох змінних. Метод Лагранжа. Типові оптимізаційні задачі економіки в сфері виробництва і споживання: прибуток від виробництва товарів, задача цінової дискримінації, оптимізаційний розподіл ресурсів, гранична норма заміни факторів.
Змістовий модуль 4 інтегрування функцій. Диференціальні та різницеві рівняння
ТЕМА 12. Інтегральне числення
Невизначений інтеграл та його властивості. Первісна. Геометричний зміст невизначеного інтеграла. Таблиця інтегралів основних функцій. Інтегрування методом заміни змінної. Інтегрування частинами. Інтегрування раціональних дробів. Інтегрування деяких класів тригонометричних функцій.
Визначений інтеграл, геометричний зміст. Основні властивості визначеного інтеграла. Формула Ньютона-Лейбниця. Методи інтегрування. Наближене обчислення визначеного інтеграла за формулами прямокутників, Симпсона. Невласні інтеграли з однією або обома нескінченими границями. Поняття про подвійний інтеграл. Дослідження збіжності інтегралів. Приклади застосування визначеного інтеграла в економіці.
Тема 13. Економічна динаміка та її моделювання: диференціальні та різницеві рівняння
Диференціальні рівняння. Геометричний зміст загального і частинного розв’язків. Задача Коші. Особливі розв’язки. Диференціальні рівняння з відокремлюваними змінними. Однорідні диференціальні рівняння. Лінійні диференціальні рівняння першого порядку. Диференціальні рівняння Бернуллі.
Диференціальні рівняння вищих порядків. Основні поняття та визначення. Диференціальні рівняння, які розв’язуються методом зниження порядку. Однорідні і неоднорідні лінійні диференціальні рівняння зі сталими коефіцієнтами другого і вищих порядків. Характеристичне рівняння.
Різницеві рівняння. Основні поняття: сітки та сіткові функції, лінійні звичайні різницеві рівняння та властивості їх розв’язків. Лінійні однорідні та неоднорідні різницеві рівняння. Системи лінійних різницевих рівнянь. Застосування різницевих рівнянь в економіці: модель ринку з запізненням збуту, ринкова модель з запасами, динамічна модель Леонтьєва.