
- •2. Описание рэс по этапам проектирования
- •3. Состав системы сапр
- •4. Структурные звенья сапр
- •6. Техническое обеспечение сапр
- •8. Программное обеспечение сапр
- •9. Информационное обеспечение сапр
- •10. Математические модели рэс
- •11.Математические модели рэс: компонентные уравнения резистора, конденсатора, индуктивности, источника напряжения, источника тока.
- •13.Электрические модели пленочного и диффузного конденсатора.
- •14.Электрическая модель дискретного и интегрального биполярного транзистора.
- •15.Электрическая модель дискретного и интегрального полупроводникового диода
- •16.Электрическая модель мдп-транзистора
- •17.Электрическая модель операционного усилителя.
- •19.Пакеты программ автоматизированного проектирования рэс.
- •21. Фнч Баттерворта
- •22. Фнч Чебышева
- •23. Характеристики фнч Бесселя
- •24. Инверсный фнч Чебышева
- •25. Сравнение различных аппроксимаций
- •26. Частотные преобразования фильтров
- •27. Параметры ачх различных типов фильтров
- •28. Построение фильтров
- •29. Схемная реализация активных фильтров
- •30. Схема Рауха (с мос)
- •41. Индукционные преобразователи: свойства, характеристики. Способ моделирования в Micro-Cap выходного сигнала электромагнитного датчика расхода.
- •42. Измерительные усилители (иу)
- •43. Дифференциальный усилитель (ду) на оу. Требования к резисторам и операционному усилителю. Моделирование в Micro-Cap параметров оу ucm и ΔiBx с учетом температурного дрейфа.
- •44. Схема ду с повторителями на входах. Схема ду с регулировкой коэффициента усиления на дополнительном оу.
- •45. Иу на одном оу с регулировкой коэффициента усиления. Порядок расчета и моделирования в системе Micro-Cap.
- •46.Иу на двух оу без синфазного сигнала на входах оу – достоинства и недостатки схемы. Порядок расчета и моделирования в системе Micro-Cap.
- •47.Иу на двух оу с высоким входным сопротивлением – достоинства и недостатки схемы. Порядок расчета и моделирования в системе Micro-Cap.
- •48. Иу на основе трех оу (классическая схема инструментального усилителя) – достоинства схемы. Порядок расчета и моделирования в системе Micro-Cap.
- •49.Интегральные инструментальные усилители.
- •50.Схемы источников опорного напряжения на основе оу. Порядок их расчета и моделирования в системе Micro-Cap.
- •51.Основные виды погрешностей источников опорного напряжения, методы их снижения.
- •52.Простейшие генераторы стабильного тока, работающие на незаземленную нагрузку. Порядок расчета и моделирования в системе Micro-Cap.
- •53.Схема источника тока с сопротивлением нагрузки в выходной цепи оу. Порядок расчета и моделирования в системе Micro-Cap.
- •54.Схема источника тока, управляемого током. Порядок расчета и моделирования в системе Micro-Cap.
- •55.Однополярный источник тока с нагрузкой, которая может быть запитана от силового источника напряжения. Порядок расчета и моделирования в системе Micro-Cap.
- •56.Неинвертирующий пнт Хауленда. Порядок расчета и моделирования в системе Micro-Cap.
- •57.Инвертирующий пнт Хауленда. Порядок расчета и моделирования в системе Micro-Cap.
- •58.Дифференциальный пнт Хауленда. Порядок расчета и моделирования в системе Micro-Cap.
- •59.Пнт с использованием повторителя напряжения. Порядок расчета и моделирования в системе Micro-Cap.
- •60.Инвертирующий пнт на основе инвертирующих оу. Порядок расчета и моделирования в системе Micro-Cap.
- •61.Неинвертирующий пнт на основе инвертирующих оу. Порядок расчета и моделирования в системе Micro-Cap.
- •62.Инвертирующий пнт с синфазным напряжением оу на нагрузке. Порядок расчета и моделирования в системе Micro-Cap.
- •63.Неинвертирующий пнт с cинфазным напряжением оу на нагрузке. Порядок расчета и моделирования в системе Micro-Cap.
- •64.Дифференциальный пнт с синфазным напряжением оу на нагрузке. Порядок расчета и моделирования в системе Micro-Cap.
1.
под САПР понимается весь спектр задач, технических и программных средств, начиная от математического моделирования радиоэлектронных средств (РЭС) различного уровня сложности до решения задач оптимального проектирования РЭС с применением современных средств машинной графики и баз данных на ЭВМ.
Под радиоэлектронным средством (РЭС) понимается изделие или его составные части, в основу функционирования которых положены принципы радиотехники и электроники. Существуют различные уровни разукрупнения РЭС по функциональной сложности: радиоэлектронные системы, комплексы, устройства и функциональные узлы.
Радиоэлектронный функциональный узел – это радиоэлектронное средство (РЭС), представляющее собой функционально законченную сборочную единицу, выполненную на несущей конструкции, реализующее функцию преобразования сигнала и не имеющее самостоятельного эксплуатационного применения.
Радиоэлектронное устройство – это РЭС, представляющее собой функционально законченную сборочную единицу, выполненную на несущей конструкции, и реализующее функции передачи, приема, преобразования информации.
Радиоэлектронный комплекс – это РЭС, представляющее собой совокупность функционально связанных радиоэлектронных устройств.
Радиоэлектронная система – это РЭС, представляющее собой совокупность функционально взаимодействующих автономных радиоэлектронных комплексов и устройств, образующих целостное единство.
Конструкторское описание отображает материальную реализацию РЭС, его геометрические формы, расположение в пространстве, используемые материалы и компоненты и т.п. Уровни конструкторского описания: шкаф (стойка), блок, модуль, ячейка.
Технологическое описание относится к методам и средствам изготовления РЭС.
2. Описание рэс по этапам проектирования
разделяют на исходное, промежуточное и окончательное.
Исходным (первичным) описанием РЭС является техническое задание (ТЗ) на проектирование. ТЗ представляет собой некоторую совокупность документов, определяющих цели и задачи, решаемые РЭС, требования к ним, условия использования, экономические ограничения и т.п.
При проектировании широко используются промежуточные описания РЭС и его составных частей:
1) В виде математической модели – совокупности математических объектов (например, чисел, переменных и их массивов), отражающей свойства радиоэлектронных средств и отношения между ними. Математические модели, как и сами РЭС, обычно строятся по блочно-иерархическому принципу и могут отражать различные аспекты описаний (функциональный, схемотехнический, конструкторский и др.).
2) В виде натурной модели (макета, стенда) или другой физической модели для изучения свойств РЭС путем эксперимента.
Окончательное описание РЭС как законченного изделия представляет собой полный комплект технической документации, включающий в себя текстовой материал, схемы, чертежи, рисунки, фотографии, технологические карты, оформленные в соответствии с требованиями ЕСКД.
С точки зрения содержания решаемых задач процесс проектирования можно разбить на следующие этапы:
1. Системотехническое проектирование, при котором выбираются и формулируются цели проектирования, обосновываются исходные данные и определяются принципы построения системы. При этом формируется структура проектируемого объекта, его составных частей, которыми обычно являются функционально завершенные блоки, определяются энергетические и информационные связи между составными частями. В результате формулируются частные технические задания на проектирование отдельных составных частей объекта.
2. Функциональное проектирование(схемотехническое) имеет целью аппаратурную реализацию составных частей системы (комплексов, устройств, узлов). При этом выбирают элементную базу, принципиальные схемы и оптимизируют параметры с точки зрения обеспечения наилучшего функционирования и эффективного производства.
3. Конструирование, которое решает задачи компоновки и размещения элементов и узлов, осуществления печатных и проводных соединений для РЭС всех уровней (модулей, ячеек, блоков, шкафов), а также задачи теплоотвода, электрической прочности, защиты от внешних воздействий и т.п. При этом стремятся оптимизировать принимаемые решения по конструктивно-технологическим, экономическим и эксплуатационным показателям.
На этом этапе проектирования разрабатывают техническую документацию, необходимую для изготовления и эксплуатации РЭС.
4. Технологическая подготовка производства обеспечивает разработку технологических процессов изготовления отдельных блоков и всей системы в целом. На этом этапе проектирования создается технологическая документация.
Процедура синтеза заключается в создании проектного решения (описания) по заданным требованиям, свойствам и ограничениям.
Процедура анализа состоит в определении свойств заданного (или выбранного) описания. Анализ позволяет оценить степень соответствия проектного решения заданным требованиям.
Типичной проектной процедурой является оптимизация, которая приводит к оптимальному (по определенному критерию) проектному решению. Процедура оптимизации состоит в многократном анализе при целевом изменении параметров схемы до удовлетворительного приближения к заданным характеристикам. В сущности, оптимизация обеспечивает создание (синтез) проектного решения, но включает поэтапную оценку характеристик (анализ).