
- •26.Предпосылки метода мнк.
- •27. Гетероскедастичность – понятие, проявление и меры устранения.
- •28. Оценка гетероскедантичности с помощью метода Гольдфельда-Квадта.
- •29. Использование коэффициента корреляции рангов Спирмэна для проверки наличия гетероскедантичности в остатках.
- •30. Использование тестов Уайта, Парка, Глейзера при анализе гетероскедантичности в остатков.
- •31. Применение обобщенного мнк (омнк) для случая гетероскедантичности остатков.
- •32. Мультиколлинеарность факторов – понятие, проявление и меры устранения.
- •33. Специфика временного ряда как источника данных в эконометрическом моделировании.
- •34. Автокорреляция уровней временного ряда и ее последствия.
- •35.Моделирование тенденции временных рядов.
- •43.Прогнозирование на основе рядов динамики.
- •48.Виды переменных в системах взаимозависимых уравнений.
- •36.Оценивание параметров в уравнениях тренда.
- •37.Модели сезонности: аддитивная и мультипликативная.
- •38.Исключение тенденции на основе метода отклонений от тренда.
- •39.Исключение тенденции на основе метода последовательных разностей.
- •40.Исключение тенденции на основе включения в модель регрессии по временным рядам фактора времени.
- •41.Автокорреляция в остатках. Критерий Дарбина-Уотсона в оценке качества уравнений, построенных по временным рядам.
- •42.Обобщенный метода наименьших квадратов (омнк) при построении модели регрессии по временным рядам.
- •44.Общая характеристика моделей с распределенным лагом и моделей авторегрессии.
- •45.Интерпретация параметров моделей с распределенным лагом и моделей авторегрессии
- •46.Применение фиктивных переменных для моделирования сезонных колебаний
- •47.Общее понятие о системах уравнений, используемых в эконометрике.
- •49.Структурная и приведенная формы модели.
- •50.Проблема идентификации. Необходимое условие идентификации (порядковое или счетное правило).
- •51.Достаточное (ранговое) условие идентификации.
- •52.Косвенный метод наименьших квадратов для оценки параметров структурной формы модели.
- •53.Двухшаговый метод наименьших квадратов для оценки параметров структурной формы модели
- •54. Примененние систем эконометрических уравнений.
39.Исключение тенденции на основе метода последовательных разностей.
Пусть где - случайная ошибка.
Тогда
Коэффициент b — константа, которая не зависит от времени. При наличии сильной линейной тенденции остатки достаточно малы и в соответствии с предпосылками МНК носят случайный характер. Поэтому первые разности уровней ряда не зависят от переменной времени, их можно использовать для дальнейшего анализа.
Если временной ряд содержит тенденцию в форме параболы второго порядка, то для ее устранения можно заменить исходные уровни ряда на вторые разности.
Пусть имеет место соотношение
Тогда:
Как показывает это соотношение, первые разности непосредственно зависят от фактора времени t и, следовательно, содержат тенденцию.
Определим вторые разности:
Очевидно, что вторые разности не содержат тенденции, поэтому при наличии в исходных уровнях тренда в форме параболы второго порядка их можно использовать для дальнейшего анализа. Если тенденции временного ряда соответствует экспоненциальный или степенной тренд, метод последовательных разностей следует применять не к исходным уровням ряда, а к их логарифмам.
40.Исключение тенденции на основе включения в модель регрессии по временным рядам фактора времени.
В корреляционно-регрессионном анализе устранить воздействие какого-либо фактора можно, если зафиксировать воздействие этого фактора на результат и другие включенные в модель факторы. Этот прием используется в анализе временных рядов, когда тенденция фиксируется через включение фактора времени в модель в качестве независимой переменной.
Модель вида , относится к группе моделей, включающих фактор времени. Очевидно, что число независимых переменных в такой модели может быть больше единицы. Кроме того, это могут быть не только текущие, но и лаговые значения независимой переменной, а также лаговые значения результативной переменной.
Преимущество данной модели по сравнению с методами отклонений от трендов и последовательных разностей в том, что она позволяет учесть всю информацию, содержащуюся в исходных данных, т.к xt и yt есть уровни исходных временных рядов. Кроме того, модель строится по всей совокупности данных за рассматриваемый период в отличие от метода последовательных разностей, который приводит к потере числа наблюдений. Параметры a и b модели с включением фактора времени определяются обычным МНК.Интерпретация параметров уравнения регрессии:параметр b1 показывает, насколько в среднем изменится значение результативного признака уt при увеличении фактора xt на единицу при неизменной величине других факторов.параметр b2 показывает, насколько в среднем за год изменится значение результативного признака уt за счет воздействия всех факторов, кроме фактора xt.
41.Автокорреляция в остатках. Критерий Дарбина-Уотсона в оценке качества уравнений, построенных по временным рядам.
Остатки полученные по модели должны быть независимы и случайными. Автокорреляция в остатках – зависимость последующего от предыдущего остатка.
Причины: 1.Плохо устранена тенденция или сезонные колебания. 2.Неправильно выбрана форма модели. 3.В регрессионной модели не учтены некоторые существенные факторы. Обнаружить автокорреляцию в остатках можно с помощью коэффициента автокорреляции в остатках:
2 способа проверки наличия автокорреляции в остатках: 1)Построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции.2)Использование критерия Дарбина- Уотсона и расчет величины :
Алгоритм выявления автокорреляции в остатках:1)Выдвигается гипотеза Н0 об отсутствии автокорреляции в остатках. Н1 И Н1*- альтернативные гипотизы о наличии или отсутствии автокорреляции. 2)По таблица определяются критический значения критерия Д.-У. – dl и du, для заданных числа наблюдений n, числа факторов модели k, и уровня значимости альфа. 3)Строится числовой промежуток:
Ограничения на применение критерия Дарбина–Уотсона: 1.он неприменим к моделям, включающим в качестве независимых переменных лаговые значения результативного признака, т. е. к моделям авторегрессии. 2. методика расчета и использования критерия Дарбина – Уотсона направлена только на выявление автокорреляции остатков первого порядка. При проверке остатков на автокорреляцию более высоких порядков следует применять другие методы, рассмотрение которых выходит за рамки данного учебника. 3 критерий Дарбина–Уотсона дает достоверные результаты только для больших выборок.