
- •Лекция №1
- •Предмет органической химии
- •Эмпирические, молекулярные и структурные формулы. Изомерия.
- •Классификация органических веществ.
- •Важнейшие функциональные производные органических веществ
- •Номенклатура органических веществ
- •Лекция № 2
- •Виды химических связей
- •Ковалентная связь
- •Образование молекулярных орбиталей из ао (лкао мо)
- •Электронная конфигурация и гибридизация углерода в органических соединениях
- •Полярность и поляризуемость связей
- •Лекция № 3
- •Классификация органических реакций: по характеру превращения
- •По типу разрыва связи в исходной молекуле
- •Энергетические аспекты химических реакций
- •Механизмы органических реакций
- •Постулат Дж. Хэммонда
- •Лекция № 4
- •Равновесные реакции
- •Кинетический и термодинамический контроль
- •Кислотно-основные свойства органических соединений
- •Кислоты и основания по Брёнстеду-Лоури
- •Кислоты и основания по Льюису
- •Лекция № 5 Углеводороды Алканы
- •Алканы (насыщенные ациклические соединения, парафины)
- •Изомерия, номенклатура
- •Конформационная изомерия
- •Номенклатура
- •Лекция № 6 Углеводороды
- •Химические свойства алканов
- •Механизм реакции галогенирования алканов
- •Лекция № 7 Углеводороды
- •Природные источники и методы получения алканов
- •Получение алканов. Лабораторные и промышленные методы синтеза
- •Лекция № 8 Углеводороды
- •Алкены (олефины, этиленовые углеводороды)
- •Получение алкенов
- •Дегидрогалогенирование алкилгалогенидов
- •Дегидратация спиртов
- •Дегалогенирование дигалогенопроизводных
- •Парциальное (частичное) гидрирование алкинов
- •Лекция № 9 Углеводороды
- •Химические свойства алкенов
- •Присоединение галогенов
- •Присоединение галогеноводородов
- •Лекция № 10 Углеводороды
- •Радикальное присоединение к алкенам
- •Гидратация алкенов
- •Образование галогенгидринов
- •Окисление алкенов
- •Образование эпоксидов
- •Окислительное расщепление двойной связи
- •Озонолиз (реакция Гарриеса)
- •Гидроксилирование алкенов (реакция Вагнера)
- •Лекция № 11 Углеводороды
- •Реакции замещения в алкильных группах алкенов
- •Полимеризация алкенов
Механизмы органических реакций
Для понимания органических реакций чрезвычайно полезно знание их механизмов.
Механизм реакции – детальное описание процесса превращения исходных соединений в продукты. Механизм включает данные о способе и последовательности разрыва и образования связей, строении интермедиатов (промежуточных продуктов), кинетике, термодинамике и стереохимии реакции. Механизм не должен противоречить имеющимся экспериментальным фактам, а при появлении новых объяснять и их.
При рассмотрении тонких особенностей механизмов чрезвычайно полезно использование так называемой энергетической диаграммы (энергетического профиля) реакции. Это графическая зависимость энергии системы от сложной функции расстояния между реагирующими веществами, которую обычно называют «координатой реакции» или «ходом реакции» (рис 3.1).
Рис. 3.1. Энергетическая диаграмма: А – эндо-, Б – экзотермическая реакция.
Данный рисунок иллюстрирует протекание одностадийных реакций. Эндотермическая реакция проходит с поглощением тепла, экзотермическая – с выделением.
Практически все химические реакции происходят при столкновении двух или более, что очень редко, реагирующих частиц. Из рис. 3.1 видно, что сближение реагирующих молекул ведет к возрастанию энергии системы до некоторого максимума. Соударения будут эффективными в том случае, когда реагирующие вещества обладают некоторым избытком энергии по сравнению со средней энергией молекул в системе. Не имеющие такого избытка энергии частицы после соударения разлетаются в разные стороны. Энергия активации - избыток энергии, необходимый для преодоления энергетического барьера. Максимальной энергии системы (высшая точка энергетической диаграммы) соответствует переходное состояние (активированный комплекс). Именно наличие переходного состояния объясняет причину того, что даже экзотермические реакции обычно не происходят самопроизвольно, а только при нагревании или других способах активации системы.
Именно переходное состояние – высшая энергетическая точка реакции – определяет ход всего превращения. Знание его строения способно внести ясность в механизм химического превращения. Однако, время жизни активированного комплекса столь мало, что не существует физических методов, позволяющих его зарегистрировать, и, следовательно, получить знания о его строении.
Постулат Дж. Хэммонда
Для косвенной оценки строения переходного состояния используют постулат Дж. Хэммонда (1955 г.): несущественные энергетические изменения сопровождаются незначительными изменениями молекулярной структуры. Более понятная формулировка: строение переходного состояния похоже на строение тех веществ, к которым оно ближе по энергии. В экзотермических реакциях переходное состояние ближе по строению к исходным реагентам (рис. 3.1). Такой активированный комплекс называют ранним переходным состоянием. Переходное состояние в эндотермических реакциях ближе по структуре к продуктам реакции, его называют поздним. Однотипные воздействия на похожие структуры приводят к близкому результату. Поэтому все факторы, стабилизирующие (понижающие энергию состояния) энергетически близкое к переходному состоянию исходное, промежуточное или конечное вещество, понижают и энергию активированного комплекса.
Использование постулата Хэммонда особенно полезно при рассмотрении многостадийных реакций (рис. 3.2).
Рис 3.2. Энергетическая диаграмма двухстадийной реакции
Из рисунка 3.2 видно, что реакция протекает в две стадии, через один промежуточный продукт. Превращение продуктов в интермедиат (первая стадия) имеет большее значение для всей реакции, чем превращение интермедиата в продукты реакции (вторая стадия). В этом убеждают соответствующие энергии активации первой и второй стадий (Ea1 и Ea2 соответственно). Весь ход реакции определяет её высшая энергетическая точка - переходное состояние первой стадии [ПС1]. Если применить к этой реакции постулат Хэммонда, легко сделать вывод, что к переходным состояниям обеих стадий реакции энергетически ближе всего промежуточный продукт.
Важно: интермедиаты во многих случаях могут быть зарегистрированы физическими методами и, следовательно, их строение известно. Строение же переходного состояния неизвестно никогда.
Зная строение интермедиата мы в дальнейшем сможем делать заключение о том, какие структурные элементы могут его стабилизировать, а какие дестабилизировать и переносить это заключение на энергию переходного состояния.