
- •Лекция №1
- •Предмет органической химии
- •Эмпирические, молекулярные и структурные формулы. Изомерия.
- •Классификация органических веществ.
- •Важнейшие функциональные производные органических веществ
- •Номенклатура органических веществ
- •Лекция № 2
- •Виды химических связей
- •Ковалентная связь
- •Образование молекулярных орбиталей из ао (лкао мо)
- •Электронная конфигурация и гибридизация углерода в органических соединениях
- •Полярность и поляризуемость связей
- •Лекция № 3
- •Классификация органических реакций: по характеру превращения
- •По типу разрыва связи в исходной молекуле
- •Энергетические аспекты химических реакций
- •Механизмы органических реакций
- •Постулат Дж. Хэммонда
- •Лекция № 4
- •Равновесные реакции
- •Кинетический и термодинамический контроль
- •Кислотно-основные свойства органических соединений
- •Кислоты и основания по Брёнстеду-Лоури
- •Кислоты и основания по Льюису
- •Лекция № 5 Углеводороды Алканы
- •Алканы (насыщенные ациклические соединения, парафины)
- •Изомерия, номенклатура
- •Конформационная изомерия
- •Номенклатура
- •Лекция № 6 Углеводороды
- •Химические свойства алканов
- •Механизм реакции галогенирования алканов
- •Лекция № 7 Углеводороды
- •Природные источники и методы получения алканов
- •Получение алканов. Лабораторные и промышленные методы синтеза
- •Лекция № 8 Углеводороды
- •Алкены (олефины, этиленовые углеводороды)
- •Получение алкенов
- •Дегидрогалогенирование алкилгалогенидов
- •Дегидратация спиртов
- •Дегалогенирование дигалогенопроизводных
- •Парциальное (частичное) гидрирование алкинов
- •Лекция № 9 Углеводороды
- •Химические свойства алкенов
- •Присоединение галогенов
- •Присоединение галогеноводородов
- •Лекция № 10 Углеводороды
- •Радикальное присоединение к алкенам
- •Гидратация алкенов
- •Образование галогенгидринов
- •Окисление алкенов
- •Образование эпоксидов
- •Окислительное расщепление двойной связи
- •Озонолиз (реакция Гарриеса)
- •Гидроксилирование алкенов (реакция Вагнера)
- •Лекция № 11 Углеводороды
- •Реакции замещения в алкильных группах алкенов
- •Полимеризация алкенов
По типу разрыва связи в исходной молекуле
Гомолитический разрыв связи:
Частицы, несущие неспаренный электрон, называются свободными радикалами (R.). Необходимо отличать термины:
радикал – органический остаток (фрагмент);
свободный радикал – частица с неспаренным электроном.
Гетеролитический разрыв связи:
Атом или группа атомов, имеющие избыток электронной плотности и способные выступать в роли донора электронной пары при образовании ковалентной связи, называются нуклеофилами (Nu). В роли нуклеофилов могут выступать как анионы, так и нейтральные молекулы. В переводе на русский язык нуклеофил – «любящий ядро», т.е. положительный заряд.
Частица или фрагмент молекулы, имеющие недостаток электронной плотности или свободную орбиталь и способные принимать пару электронов с образованием ковалентной связи, называются электрофилами (E). Ими могут быть как катионы, так и нейтральные молекулы. Электрофил – «любящий электроны», т.е. отрицательный заряд.
Объединим классификации.
Реакции замещения могут происходить под действием свободных радикалов, электрофилов и нуклеофилов. Пример реакции нуклеофильного замещения:
Аналогично реакции присоединения, элиминирования и перегруппировки могут протекать под действием нуклеофилов, электрофилов и свободных радикалов.
Энергетические аспекты химических реакций
Основным критерием возможности протекания химической реакции является термодинамический аспект процесса. Термодинамика процесса описывается следующим уравнением:
G = H TS
где G - изменение свободной энергии в ходе реакции, H - изменение энтальпии, S - изменение энтропии.
Любая система (молекула или группа молекул) стремится находиться в наиболее устойчивом состоянии, т.е. стремится к минимуму внутренней энергии. В этом случае молекула наиболее термодинамически и химически стабильна. Поэтому реакция протекает в том случае, когда она сопровождается уменьшением свободной энергии. Величина G является критерием возможности протекания химической реакции. Если G меньше 0 – реакция возможна (но не означает, что она идет), если G больше 0 – протекание реакции невозможно.
Изменение энтальпии H, по существу, - разность энергий связей реагентов и продуктов, включая энергии сопряжения, напряжения и сольватации. H можно рассчитать, суммируя энергии всех разрывающихся в ходе реакции связей и вычитая из них сумму энергий всех образующихся связей, прибавив все изменения энергий сопряжения, напряжения и сольватации. Кроме того, изменение энтальпии можно определить экспериментально, измерив тепловой эффект реакции, т.к. изменение энтальпии равно тепловому эффекту реакции, взятому с обратным знаком.
-H = Qр
Изменение энтропии S характеризует меру беспорядка системы. В органической химии этот фактор редко играет большую роль, т.к. реакции идут при относительно небольших температурах, при которых энтропийный фактор мал. Тем не менее, в некоторых случаях изменение энтропии может играть заметную роль:
поскольку газы имеют более высокую энтропию, чем жидкости (тем более, чем твердые вещества), то любая реакция, в которой исходные вещества жидкие или твердые, а один или более продуктов – газообразные, термодинамически выгодна, поскольку энтропия системы возрастает;
если в ходе реакции образуется больше молекул продуктов, чем молекул исходных веществ, то реакция протекает с увеличением энтропии.
Само по себе отрицательное значение G не означает, что реакция будет протекать в обозримый период времени. Отрицательная величина изменения свободной энергии является необходимым, но не достаточным фактором самопроизвольного протекания химической реакции. Например, реакция двух моль водорода с одним моль кислорода, протекающая с образованием воды, характеризуется большой отрицательной величиной изменения свободной энергии. Однако, смесь О2 и Н2 может десятилетиями храниться при комнатной температуре без каких-либо признаков химической реакции.