
- •1.Случайные события. Пространство элементарных событий. Алгебра событий.
- •2 Вероятность в дискретных пространствах элементарных событий.
- •3. Классическая схема равновероятных событий.
- •4 Теорема сложения и умножения вероятности.
- •5. Формула полной вероятности и формула Байеса.
- •7.Повторение испытаний. Схема Бернулли. Биномиальное распределение. Формула Пуассона
- •10.Вероятность в непрерывных пространствах элементарных событий и ее свойства. Геометрические вероятности
- •13. Системы дискретных случайных величин. Таблица распределения. Независимость. Ковариация. Механическая интерпретация. Условные распределения.
- •14.Мат. Ожидание и дисперсия суммы случайных величин. Мат ожидание произведения случайных величин.
- •15.Коэффициент корреляции как характеристика статистической связи. Некоррелированность и независимость случ. Величин.
- •18.Функции случайных величин. Вычисление мат ожиданий. Нахождение закона распределения для функции одной случайной величины, в случае дискретной и непрерывной случайной величин
- •21. Теорема Бернулли.
- •22. Теорема Чебышева и ее обобщение.
- •23. Асимптотическое распределение среднего арифметического независимых случайных величин и относительной частоты.
- •17. Предмет мат статистики. Основные понятия: выборка, генеральная совокупность, статистики Распределение выборки, выборочные моменты.
- •18. Задача статистического оценивания. Несмещенность и состоятельность оценок, эффективность оценок.
- •19. Метод моментов. Несмещенная оценка дисперсии
- •20. Распр. Хи-квадрат, Стьюдента, Фишера. Их определ. Свойства. Применение при нахождении доверительных интервалов и при проверке стат.Гипотез.
- •22.Доверит. Интервал для среднего и разности средних
- •23.Проверка стат.Гипотез. Классиф. Критерий. Стат.Крит. Ур-нь значимости. Крит.Обл. Ошибки 1 и 2 рода.
- •24.Проверка гипотез о равенстве дисперсий и средних.
- •25. Регрессионный анализ. Оценки параметров линейной регрессии методом наименьших квадратов.
- •26. Анализ значимости и адекватности регрессионной модели.
21. Теорема Бернулли.
Пусть А – случайный исход некоторого экспериментов, P(A)=p – вероятность этого исхода. Предположим, что эксперимент повторяется n раз в неизменных условиях (т.е. вероятность Р(А)=р не изменяется при повторении экспериментов). Тогда относительная частота появление события А при n -> ∞ сходится по вероятности к р:
, или
где n – общее число исходов,
m – число благоприятных исходов,
p – вероятность появления случ. величины.
Док-во:
Пусть
Причем
,
а
.
Вычислим математическое
ожидание случайной величины
:
M[Xi] = 1*p + 0*q = p
И математическое ожидание их среднего арифметического:
Случайные величины , i=1…n по условию взаимно независимы, а их среднее арифметическое есть относительная частота появления события А в середине n экспериментов
Теорема Бернулли дает математическое обоснование экспериментальным результатам, в которых наблюдается устойчивость частот при увеличении числа экспериментов.
Устойчивость среднего арифметического можно объяснить тем, что случайное отклонения от среднего, неизбежные в каждом отдельном результате, в массе однородных результатов взаимно поглощаются, нивелируются, выравниваются. Вследствие этого средний результат
ктически перестает быть случайным и может быть предсказан достаточно точно.
22. Теорема Чебышева и ее обобщение.
Если дисперсии n-независимых случайных величин (X1…Xn) ограничены одной и той же постоянной, то при неограниченном увеличении числа n среднее арифметическое случайных величин сходится по вероятности к среднему арифметическому их математических ожиданий.
Док-во:
По условию: M(
)=
… M(
)=
По первому неравенству Чебышева получаем:
поскольку P>1, то:
Вывод: при достаточно больших n выполнение рассматриваемого неравенства является событием практически достоверным, а неравенства противоположного смысла практически невозможно.
Таким образом предел по вероятности следует понимать не как категорическое отверждение, а как утверждение, вероятность которого гарантируется с вероятностью близкой к 1 (при n->∞)
Таким образом, при большом числе случайных величин практически достоверно, что их средняя случайная величина как угодна мало отличается от неслучаной – среднего математического ожидания, т.е. перестает быть случайной.
Этим заключением обоснован выбор средней арифметической в качестве меры истинного значения мат. ожидания.
Практическое значение:
Пример:
Необходимо установить размер страхового
взноса, с условием что он(?) сделает
выплаты при наступлении страхового
случая. Замечание
Если все измерения проводятся с одинаковой
точностью и дисперсией (
),
то дисперсия их средней величины
Т.е. средний
разброс случайной величины
меньше разброса каждого
измерения. Увеличивая число измерения
можно уменьшить влияния случайных
погрешностей (но не систематических)
23. Асимптотическое распределение среднего арифметического независимых случайных величин и относительной частоты.
Распределение среднего арифметического случайных величин.
Пусть X1…Xn… - независимые и одинаково распределенные случайные величины с мат.ожиданием и дисперсией . Среднее арифметическое их:
]=nm/n=n
.
При n->∞ -> 0. Среднее арифметическое можно представить: , т.е. можно рассмотреть как сумму случайных величин. Тогда
– в силу центральной предельной теоремы
Распределение относительно частоты
Ћ = k/n – относительная частота появления события А, где k – число появлений события а в n испытаниях.
0,999 – (например) абсолютная частота
Ћ = k/n = X/n - число появлений события а в n испытаниях.
M[h] = M[X/n] = 1/n*np=p
D[h] = D[X/n] = 1/n2*D[X]= 1/n2*npq=pq/n
Ћ
= k/n = X/n = X1/n + … + Xn/n