
- •1. Что такое нефть? Распределение природных горючих ископаемых в земной коре. Топливно-энергетический комплексы рф и мира. Крупнейшие нефте-, газодобывающие и перерабатывающие компании мира и рф.
- •Крупнейшие нпз мира в период 2000-2001 гг.
- •2. Основные теории происхождения нефти: неорганическая, органическая и космическая Происхождение нефти
- •Групповой состав нефти
- •Гетероатомные соединения нефти
- •4. Основные типы классификации нефтей: химическая, технологическая и другие. Классификация нефтей
- •5. Природный и попутный нефтяной газы, химический состав. Что такое газовый фактор? природный газ
- •1. Плотности (нефть, конденсат, н/п).
- •Молекулярная масса
- •Давление насыщенных паров
- •Аппарат для определения давления насыщенных паров нефтепродуктов
- •Критические параметры
- •Критические параметры веществ
- •4. Вязкость
- •7. Оптические свойства нефти и н/п.: цвет, коэффициент преломления, оптическая активность и методы их определения.
- •Коэффициент преломления (рефракции)
- •Зависимость показателя преломления углеводородов от молекулярной массы
- •Оптическая активность
- •8. Температура вспышки, воспламенения и самовоспламенения.
- •Температура вспышки, воспламенения и самовоспламенения
- •Температура воспламенения и самовоспламения
- •Низкотемпературные свойства н/п
- •7.1 Температура помутнения
- •7.2. Температура начала кристаллизации
- •Температура застывания
- •10. Применение ик-спектроскопии к изучению нефти и н/п и газов: основы ик-спектроскопии. Применение ик-спектроcкопии к изучению нефти, нефтепродуктов и газов
- •I. Основы метода ик-спектроскопии
- •2. Расшифровка ик-спектров поглощения
- •Приборы для метода ик-спектроскопии
- •Классификация методов хроматографии
- •12. Основные виды хроматографии: жидкостно-адсорбционная, газо-адсорбционная, жидкостно-жидкостная и газожидкостная хроматографии.
- •2. Детектор по теплоте сгорания (термохимический)
- •3. Пламенно-ионизационный детектор (дип).
- •4. Аргоновый детектор Ловелока.
- •5. Электронно-захватный детектор (эзд)
- •6. Детектор по плотности газов (денситометр или плотномер)
- •Пламенно-фотометрический детектор (пфд).
- •14. Классификация хроматографов.
- •15. Основные хроматографические характеристики: время удерживания и удерживаемый объем, высота и ширина пика, площадь пика и способы их определения
- •Применение газовой хроматографии для исследования углеводородных систем
- •Основные хроматографические характеристики
- •Время удерживания и удерживаемый объем
- •16. Исправленное время удерживания, удерживаемый объем.
- •Влияние скорости газа-носителя на эффективность колонки
- •18. Качественный и количественный хроматографический анализы. Способы идентификации компонентов сложных смесей. Качественный и количественный хроматографический анализы
- •Абсолютная калибровка
- •Содержание компонента, %
- •Внутренняя стандартизация
- •Метод нормализации площадей
- •Классификация установок первичной перегонки нефти
- •Продукты первичной перегонки нефти
- •Комбинированная установка первичной переработки нефти
- •Производительностью 6 млн т/год сернистой нефти:
- •21. Изомеризация пента-гексановой фракции. Катализаторы и схема установки изомеризации пентан-гексановой фракции, основные реакции углеводородов.
- •Переработка природных углеводородных газов
- •1. Изомеризация пентан-гексановой фракции
- •2. Получение мтбэ
- •22. Процессы очистки нефти и н/п: защелачивание основные реакции очистки н/п, демеркаптанизация, процесс «Мерокс», основные реакции очистки н/п.
- •Защелачивание
- •Демеркаптанизация
- •23. Процесс гидроочистки н/п, основные катализаторы, реакции гидрогенолиза гетероатомных соединений, технологические показатели процессов гидроочистка
- •24. Принципиальная схема процессов гидроочистки н/п: бензиновых, керосиновых и дизельных и вакуумных дистиллятов Технологические показатели процессов.
- •Топлива марки рт
- •Го дизельных топлив.
- •Го вакуумных дистиллятов.
- •Каталитический риформинг бензина
- •Каталитический риформинг на получение бензина
- •Каталитический риформинг на получение ароматических углеводородов
- •27. Пиролиз углеводородного сырья, основные реакции пиролиза: реакции изомеризации, замещения, присоединения, рекомбинации, диспропорционирования, цепные реакции. Пиролиз углеводородного сырья
- •28. Технологическая схема установки пиролиза углеводородных фракций. Схема производства эп-300. Основные продукты пиролиза. Пиролиз нефтяного сырья
- •Технологическая схема производства этилена
- •30. Принципиальные схемы процесса и основные технологические показатели. Продукты кк и их использование. Катализаторы процесса кк
- •(Установка rсс):
Продукты первичной перегонки нефти
В зависимости от состава нефти, варианта ее переработки и особых требований к топливным и масляным фракциям состав продуктов установок первичной перегонки нефти может быть различным. Так, при переработке типовых восточных нефтей получают следующие фракции (с условными пределами выкипания по преимущественному содержанию целевых компонентов): бензиновые н.к. — 140 (180) 0С, керосиновые 140 (180)—240 °С, дизельные 240—350 0С, вакуумный дистиллят (газойль) 350—490 °С (500 °С) или узкие вакуумные масляные погоны 350—400, 400—450 и 450—500 0С, тяжелый остаток > 500 °С — гудрон.
Выход топливных и масляных фракций зависит в первую очередь от состава нефти, т. е. от потенциального содержания целевых фракций в нефтях. В качестве примера в табл. 8.1 приведены данные по выходу топливных и масляных фракций из ромашкинской и самотлорской нефтей, различающихся потенциальным содержанием топливных фракций — содержание фракций до 350 °С в этих нефтях составляет около 46 и 50 % (мае.) соответственно (табл. 8.1).
Рассмотрим направления использования продуктов первичной перегонки нефти и мазута.
Углеводородный газ состоит в основном из пропана и бутана. Пропан-бутановая фракция используется как сырье газофракционирующей установки для выделения из нее индивидуальных углеводородов, получения бытового топлива. В зависимости от технологического режима и аппаратурного оформления первичной перегонки нефти пропан-бута-новая фракция может получаться в сжиженном или газообразном состоянии.
Бензиновая фракция н.к. -180 °С используется как сырье установки вторичной перегонки бензинов (вторичной ректификации).
Керосиновая фракция 120—240 0С после очистки или облагораживания используется как реактивное топливо; фракция 150—300 0С - как осветительный керосин или компонент дизельного топлива.
Фракция дизельного топлива 180—350 °С после очистки используется в качестве дизельного топлива; возможно получение компонентов легкого (зимнего) и тяжелого (летнего) дизельного топлива соответствующего фракционного состава, например 180—240 и 240—350 °С. Фракция 200—220 °С парафинистых нефтей используется как сырье для производства жидких парафинов — основы для получения синтетических моющих средств.
Атмосферный газойль 330—360 °С — затемненный продукт, получается на установке АВТ, работающей по топливному варианту; используется в смеси с вакуумным газойлем в качестве сырья установки каталитического крекинга.
Мазут — остаток первичной перегонки нефти; облегченный мазут (> 330 °С) может использоваться в качестве котельного топлива, утяжеленный мазут (> 360 °С) - как сырье для последующей переработки на масляные фракции до гудрона. В настоящее время мазут может использоваться также как сырье установок каталитического крекинга или гидрокрекинга (ранее применялся в качестве сырья установок термического крекинга).
Широкая масляная фракция (вакуумный газойль) 350—500° или 350— 550 °С используется как сырье установки каталитического крекинга и гидрокрекинга.
Узкие масляные фракции 350—400, 400—450 и 450—500 0С после соответствующей очистки от сернистых соединений, полициклических ароматических и нормальных парафиновых углеводородов используются для производства смазочных масел.
Гудрон — остаток вакуумной перегонки мазута — подвергается дальнейшей переработке с целью получения остаточных масел, кокса и (или) битума, а также котельного топлива путем снижения вязкости на установках висбрекинга.