
- •1. Что такое нефть? Распределение природных горючих ископаемых в земной коре. Топливно-энергетический комплексы рф и мира. Крупнейшие нефте-, газодобывающие и перерабатывающие компании мира и рф.
- •Крупнейшие нпз мира в период 2000-2001 гг.
- •2. Основные теории происхождения нефти: неорганическая, органическая и космическая Происхождение нефти
- •Групповой состав нефти
- •Гетероатомные соединения нефти
- •4. Основные типы классификации нефтей: химическая, технологическая и другие. Классификация нефтей
- •5. Природный и попутный нефтяной газы, химический состав. Что такое газовый фактор? природный газ
- •1. Плотности (нефть, конденсат, н/п).
- •Молекулярная масса
- •Давление насыщенных паров
- •Аппарат для определения давления насыщенных паров нефтепродуктов
- •Критические параметры
- •Критические параметры веществ
- •4. Вязкость
- •7. Оптические свойства нефти и н/п.: цвет, коэффициент преломления, оптическая активность и методы их определения.
- •Коэффициент преломления (рефракции)
- •Зависимость показателя преломления углеводородов от молекулярной массы
- •Оптическая активность
- •8. Температура вспышки, воспламенения и самовоспламенения.
- •Температура вспышки, воспламенения и самовоспламенения
- •Температура воспламенения и самовоспламения
- •Низкотемпературные свойства н/п
- •7.1 Температура помутнения
- •7.2. Температура начала кристаллизации
- •Температура застывания
- •10. Применение ик-спектроскопии к изучению нефти и н/п и газов: основы ик-спектроскопии. Применение ик-спектроcкопии к изучению нефти, нефтепродуктов и газов
- •I. Основы метода ик-спектроскопии
- •2. Расшифровка ик-спектров поглощения
- •Приборы для метода ик-спектроскопии
- •Классификация методов хроматографии
- •12. Основные виды хроматографии: жидкостно-адсорбционная, газо-адсорбционная, жидкостно-жидкостная и газожидкостная хроматографии.
- •2. Детектор по теплоте сгорания (термохимический)
- •3. Пламенно-ионизационный детектор (дип).
- •4. Аргоновый детектор Ловелока.
- •5. Электронно-захватный детектор (эзд)
- •6. Детектор по плотности газов (денситометр или плотномер)
- •Пламенно-фотометрический детектор (пфд).
- •14. Классификация хроматографов.
- •15. Основные хроматографические характеристики: время удерживания и удерживаемый объем, высота и ширина пика, площадь пика и способы их определения
- •Применение газовой хроматографии для исследования углеводородных систем
- •Основные хроматографические характеристики
- •Время удерживания и удерживаемый объем
- •16. Исправленное время удерживания, удерживаемый объем.
- •Влияние скорости газа-носителя на эффективность колонки
- •18. Качественный и количественный хроматографический анализы. Способы идентификации компонентов сложных смесей. Качественный и количественный хроматографический анализы
- •Абсолютная калибровка
- •Содержание компонента, %
- •Внутренняя стандартизация
- •Метод нормализации площадей
- •Классификация установок первичной перегонки нефти
- •Продукты первичной перегонки нефти
- •Комбинированная установка первичной переработки нефти
- •Производительностью 6 млн т/год сернистой нефти:
- •21. Изомеризация пента-гексановой фракции. Катализаторы и схема установки изомеризации пентан-гексановой фракции, основные реакции углеводородов.
- •Переработка природных углеводородных газов
- •1. Изомеризация пентан-гексановой фракции
- •2. Получение мтбэ
- •22. Процессы очистки нефти и н/п: защелачивание основные реакции очистки н/п, демеркаптанизация, процесс «Мерокс», основные реакции очистки н/п.
- •Защелачивание
- •Демеркаптанизация
- •23. Процесс гидроочистки н/п, основные катализаторы, реакции гидрогенолиза гетероатомных соединений, технологические показатели процессов гидроочистка
- •24. Принципиальная схема процессов гидроочистки н/п: бензиновых, керосиновых и дизельных и вакуумных дистиллятов Технологические показатели процессов.
- •Топлива марки рт
- •Го дизельных топлив.
- •Го вакуумных дистиллятов.
- •Каталитический риформинг бензина
- •Каталитический риформинг на получение бензина
- •Каталитический риформинг на получение ароматических углеводородов
- •27. Пиролиз углеводородного сырья, основные реакции пиролиза: реакции изомеризации, замещения, присоединения, рекомбинации, диспропорционирования, цепные реакции. Пиролиз углеводородного сырья
- •28. Технологическая схема установки пиролиза углеводородных фракций. Схема производства эп-300. Основные продукты пиролиза. Пиролиз нефтяного сырья
- •Технологическая схема производства этилена
- •30. Принципиальные схемы процесса и основные технологические показатели. Продукты кк и их использование. Катализаторы процесса кк
- •(Установка rсс):
Зависимость показателя преломления углеводородов от молекулярной массы
Молекулярная
масса
1
-
парафиновые;
2 - олефины; 3-
нафтеновые; 4- ароматические
углеводороды.
Рис.
Кроме того, показатель преломления зависит от температуры, nD20 с повышением температуры уменьшается, причем для масел, парафинов и церезина это снижение составляет 0,0004 на каждый градус разности температур. Пересчет nD20 с одной температуры на другую осуществляется по формуле:
nDto = nDt + (t-to), (2)
где - поправочный коэффициент (0,0004 на 1 0С), nDto – показатель преломления для D – линии натрия (λ = 589,3 нм) при температуре t0, nDt – то же при температуре опыта.
Показатель преломления смеси углеводородов nсм является аддитивной функцией ее состава, выраженного в объемных процентах:
nсм = [Va/(Va + Vb)] ∙ na + = [Vb/(Va + Vb)] ∙ nb, (3)
где Va и Vb – соответственно объемное содержание компонента А и В, na и nb – соответственно показатели преломления компонентов А и В.
Аддитивность свойств широко используется при анализе н/п, примером может служить метод определения относительного содержания ароматических углеводородов в узких фракциях бензина.
Экспериментально показатель преломления определяют с помощью рефрактометров; при обычном дневном освещении – на рефрактометре ИРФ-22 или со специальным монохроматическим светом – на ИРФ-23. Точность этих рефрактометров соответственно 2 ∙ 10-4 и 1,5 ∙ 10-5.
Оптическая активность
Оптическая активность – это свойство н/п поворачивать вокруг своей оси (вращать) плоскость луча поляризованного света (главным образом вправо). Измерение угла вращения проводят с помощью поляриметров. Природа этого явления ясна не до конца, однако считается, что оно связано с присутствием в нефтях полициклических нафтенов и аренов.
По убыванию оптической активности углеводороды располагаются в ряд: полициклические циклоалканы, циклоалканоарены, полициклические арены, моноциклические арены, алканы.
8. Температура вспышки, воспламенения и самовоспламенения.
Температура вспышки, воспламенения и самовоспламенения
Температурой вспышки – называется температура, при которой н/п, нагретый в стандартных условиях, выделяет такое количество паров, которое образует с окружающим воздухом горючую смесь, вспыхивающую при поднесении к ней пламени.
Для индивидуальных углеводородов существует определенная количественная связь температуры вспышки и температуры кипения, выражаемая соотношением:
Твсп = 0,736 Ткип, (3)
где Твсп и Ткип выражены в К.
Для н/п, выкипающих в широком интервале температур, такую зависимость установить нельзя. В этом случае температура вспышки н/п связана с их средней температурой кипения, т.е. с испаряемостью. Чем легче фракция н/п, тем ниже ее температура вспышки. Так, например, бензиновые фракции имеют отрицательные (до минус 40 0С) температуру вспышки, керосиновые фракции 28 – 60 0С, масляные фракции 130-325 0С. Присутствие влаги, продуктов распада в нефтепродуктах заметно влияет на величину его температуры вспышки.
Стандартизованы два метода определения температуры вспышки н/п в открытом (ГОСТ 4333-87) и закрытом (ГОСТ 6356-75) тиглях. Разность температур вспышки одних и тех же н/п при определении в открытом и закрытом тиглях весьма велика. В последнем случае требуемое количество нефтяных паров накапливается раньше, чем в приборах открытого типа. Кроме того, в открытом тигле образовавшиеся пары свободно диффундируют в воздух. Указанная разность тем больше, чем выше температура вспышки н/п.
При определении температуры вспышки в открытом тигле н/п сначала обезвоживают с помощью хлорида кальция, сульфата кальция, затем заливают в тигель до определенного уровня в зависимости от вида н/п. Нагрев тигля ведут с определенной скоростью, и при температуре на 10 0С ниже ожидаемой температуры вспышки медленно проводят по краю тигля над поверхностью н/п пламенем горелки, горящей деревянной палочки или другого зажигательного устройства. Эту операцию повторяют через каждые 2 0С. За температуру вспышки принимают ту температуру, при которой появляется синее пламя над поверхностью н/п.
При определении температуры вспышки в закрытом тигле н/п заливают до определенной метки и в отличие от описанного выше метода нагревание его проводят при непрерывном перемешивании. При открывании крышки тигля в этом приборе автоматически подносится пламя к поверхности н/п. Определение температуры вспышки начинают за 10 0С до предполагаемой температуры вспышки – если она ниже 50 0С, и за 17 0С – если она выше 50 0С. Определение проводят через каждый градус, причем в момент определения перемешивание прекращают. Все вещества, имеющую температуру вспышки в закрытом тигле ниже 61 0С, относятся к легковоспламеняющимся жидкостям (ЛВЖ), которые , в свою очередь, подразделяются на особо опасные (tвсп ниже минус 18 0С), постоянно опасные (tвсп от минус 18 0С до 23 0С) и опасные при повышенной температуре (tвсп от 23 0С до 61 0С).
Температура вспышки н/п характеризует возможность этого н/п образовывать с воздухом взрывчатую смесь. Смесь паров н/п с воздухом становится взрывчатой, когда концентрация паров горючего в ней достигает определенных значений и в соответствии с этим различают нижний и верхний пределы взрываемости смеси паров н/п с воздухом. Если концентрация паров н/п меньше нижнего предела взрываемости, взрыва не происходит, т.к. имеющийся избыток воздуха поглощает выделяющееся в исходной точке взрыва тепло и таким образом препятствует возгоранию остальных частей горючего.
При концентрации паров н/п в воздухе выше верхнего предела взрыва не происходит из-за недостатка кислорода в смеси.