
- •Номенклатура, строение и свойства высших жирных кислот. Физиологические функции производных арахидоновой кислоты – эйкозаноидов.
- •Простые омыляемые липиды. Свойства жиров. Воски.
- •Структура, свойства и биологические функции глицеро- и сфингофосфолипидов.
- •Свойства фосфолипидов
- •Биологическая роль фосфолипидов
- •Гликолипиды. Структура и биологические функции олигосахаридов.
- •Представители олигосахаридов
- •Полисахариды
- •5.Молекулярная организация и функции биологических мембран. Понятие об активном и пассивном транспорте.
- •7. Изопреноиды. Феромоны насекомых.
- •Феромоны насекомых.
- •8. Производные стерана: холестерин, эргостерин, желчные кислоты, сердечные гликозиды.
- •Желчные кислоты человека
- •9.Характеристика стероидных гормонов: структура, место синтеза, физиологические функции.
- •10. Производные аминокислот. Тиреоидные гормоны, катехоламины,нейромедиаторы.
- •12. Низкомолекулярные пептиды ( глутатион, карнозин, нейропептиды, пептиды- токсины).
- •13.Антибиотики. Пенициллины. Грамицидин. Сульфациламиды.
- •14.Витамины, растворимые в воде.
- •Витамин в1
- •Витамин в2
- •Витамин рр
- •Витамин в3
- •Витамин в6
- •Витамин н
- •15.Витаминоподобные соединения. Коферменты.
- •16.Жирорастворимые витамины.
- •Витамин а
- •Каротин
- •Витамин д
- •Витамин к
- •17.Биологически важные гетероциклические соединения. Алкалоиды.
- •Биологически активные производные пиридина.
- •18.Классификация, свойства и номенклатура природных кето-, гидрокси- и аминокислот.
- •Общие химические свойства.
- •Химические свойства.
- •19.Химический синтез аминокислот. Способы разделения рецематов. Понятие о ферментативном и микробиологическрм синтезе.
- •20.Компоненты нуклеиновых кислот. Пуриновые и пиримидиновые основания. Нуклеозиды, нуклеотиды.
12. Низкомолекулярные пептиды ( глутатион, карнозин, нейропептиды, пептиды- токсины).
Глутатион (2-амино-5-{[2-[(карбоксиметил)амино]- 1-(меркаптометил)-2-оксоэтил]амино}-5-оксопентаноевая кислота, англ.) — это трипептид γ-глутамилцистеинилглицин. Глутатион содержит необычную пептидную связь между амино-группой цистеина и карбокси-группой боковой цепи глутамата. Важность глутатиона в клетке определяется его антиоксидантными свойствами. Фактически глутатион не только защищает клетку от таких токсичных агентов, как свободные радикалы, но и в целом определяет редокс-статус внутриклеточной среды.
Биосинтез происходит в две стадии
Синтез происходит в две АТР-зависимые стадии:
На первой стадии синтезируется гамма-глутамилцистеин из L-глутамата и цистеина ферментом гамма-глутамилцистеин синтетазой (или глутаматцистеин лигазой). Данная реакция является лимитирующей в синтезе глутатиона.
На второй стадии фермент глутатион синтетаза присоединяет остаток глицина к С-концевой группе гамма-глутамилцистеина. Глутатион участвует в синтезе лейкотриенов и является кофактором фермента глутатионпероксидазы. Он также важен в качестве гидрофильной молекулы, которая присоединяется ферментами печени к гидрофобным токсическим веществам в процессе их биотрансформации с целью выведения из организма (в составе желчи). Как часть глиоксалазной ферментативной системы глутатион участвует в реакции детоксификации метилглиоксаля, токсического побочного продукта метаболизма
Карнозин - дипептид, состоящий из бета-аланина и гистидина. Наибольшая концентрация карнозина в организме определяется в мозге и мышцах. Карнозин был впервые обнаружен в составе мышечного экстракта русским ученым-биохимиком Владимиром Сергеевичем Гулевичем в 1900 г. Исследователи из Великобритании, Южной Кореи, России и других стран показали, что карнозин имеет свойства антиоксиданта. Доказана активность карнозина в удалении активных форм кислорода (АФК), а также альфа-бета ненасыщенных альдегидов, образующихся из суперокисленых жирных кислот клеточных мембран в процессе окислительного стресса.
Биологические эффекты карнозина
Увеличение выносливости за счет приема карнозина (бета-аланина)
Повышает выносливость при анаэробных нагрузках
Сокращает время отдыха
Увеличивает общую рабочую мощность тренировок
Вышеперечисленные качества объясняют широкое распространение карнозина в бодибилдинге и спортивном питании. В настоящее время карнозин входит в состав спортивного питания именно с этой целью — предотвратить накапливание химических побочных продуктов во время высокоинтенсивных занятий, понижающих pH концентрацию в мышечных клетках и приводящих к усталости. Теоретически, удерживая высокий уровень pH, можно увеличить время занятия и улучшить его качество. И хотя эта теория абсолютно разумна, имеющиеся на данный момент научные данные не выявили улучшений в качестве работы у атлетов, принимающих карнозин. Результаты опытов на животных довольно оптимистичны, и карнозин заслуживает вашего внимания, как новый препарат на рынке спортивных добавок.
Нейропепти́ды — пептиды (разновидность молекул белка), образующиеся в центральной или периферической нервной системе и регулирующие физиологические функции организма человека и животных.
Структура.Нейропептиды содержат от 2 до 50-60 аминокислотных остатков. Более крупные полипептиды со схожей функцией относят к регуляторным белкам. Большинство нейропептидов имеет линейную структуру, но встречаются среди них и кольцевые молекулы (например, соматостатин). Циклизация осуществляется путем образования дисульфидных связей между остатками цистеина, находящихся на разных концах пептида.
Синтез.Вначале на рибосомах синтезируются более длинные полипептидные цепи — предшественники. Они обязательно начинаются с сигнальной последовательности, которая необходима для проникновения полипептида во внутреннее пространство эндоплазматической сети. Далее белки-предшественники транспортируются в мембранных пузырьках к нервным окончаниям и расщепляются протеазами в определенных местах.Нередко при этом высвобождается сразу несколько активных пептидов. В промежуточной доле гипофиза при расщеплении единого белка-предшественника проопиомеланокортина образуются, в зависимости от способа протеолиза, типичные гормоны (МСГ, липотропин и АКТГ), которые являются также нейромодуляторами;пептиды с исключительно нейромодуляторной функцией (эндорфины и близкий им мет-энкефалин).
Среди пептидных токсинов наиболее известны токсины ядовитых грибов. Так, бледная поганка Amanita phalloides содержит пептидные токсины аманитин и феллоидин, а также ряд токсинов, объединяемых общим названием – аматоксины. Они содержатся в этих грибах в высоких концентрациях, например аматоксины – до 0,4 мг на 1 г массы гриба. Если учесть, что смертельная доза для человека составляет около 5-7 мг, то есть один-два съеденных грибы могут вызвать смерть.
Все токсины этого вида – циклические пептиды. Токсическое действие аматоксинов связано с нарушением синтеза РНК в клетках, а фаллоидин нарушает целостность мембраны клеток печени – гепатоцитов.
Пептидные токсины из ядов пчел (Apis melifera)
Апамин – линейный пептид из 18 АК, влияет на работу кальциевых каналов в мембранах, меллитин – пептид из 22 АК – вызывает ионную проводимость в мембранах, а третий – МСД-пептид вызывает аллергические и воспалительные реакции.
Пептидные токсины из ядов змей по числу АК можно отнести к белковым веществам, но их традиционно рассматривают как пептиды. Среди них различают более короткие – по 60-62 АК и более длинные – до 71-74 АК. Эти токсины, как правило, действуют на мембраны нервных клеток или аксионов, нарушая их нормальное функционирование, но в малых концентрациях, так же как и токсины яда пчел, используются как эффективные лекарственные средства против ряда заболеваний, связанных с нервно-мышечными расстройствами.
Яд скорпионов содержит пептидные нейротоксины из 15-16 АК, которые замедляют передачу нервных импульсов. Уникальным свойством яда скорпионов является способность его токсинов избирательно действовать только на один из классов животных: млекопитающих, насекомых или ракообразных. К собственному токсину у скорпиона существует врожденный иммунитет.