Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МОНОЛИТ + СБОРНЫЙ 12 На печать.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
867.42 Кб
Скачать

2.2.6.2 Расчеты прогибов

Расчет железобетонных элементов по прогибам производят из условия:

, (2.2.6.2.1)

где - предельно допустимый прогиб, определяемый по таблице СНиП 2.01.07-86* «Нагрузки и воздействия».

Различают два вида прогибов:

-длительный прогиб, возникает от длительного действия нагрузок, предельное значение регламентируется СНиП 2.01.07-85* «Нагрузки и воздействия» и зависит от вида конструкции: для покрытий и перекрытий при наличии на них элементов, подверженных растрескиванию (стяжек, полов, перегородок) .

-полный прогиб, возникает от действия всей нагрузки, предельное значение

,

где - пролет конструкции.

Определение прогибов выполняют в зависимости от наличия или отсутствия трещин. По упрощенной формуле прогиб можно найти следующим образом:

, (2.2.6.2.2)

где - соответствующая кривизна, при которой определяется прогиб;

- коэффициент, зависящий от расчетной схемы элемента и вида нагрузки, для нагрузки, равномерно распределенной по однопролетной шарнирной балке s = ;

- расчетный пролет, в нашем случае – расстояние между серединами площадок опирания плиты.

Полная кривизна для участков с трещинами в растянутой зоне определяется как:

, (2.2.6.2.3)

где - кривизна от непродолжительного действия полных нагрузок;

- кривизна от непродолжительного действия постоянных и временных длительных нагрузок;

- кривизна от продолжительного действия постоянных и временных длительных нагрузок;

Значение полного прогиба определяем от полной кривизны, значение длительного прогиба – только от , то есть кривизны от продолжительного действия постоянных и временных длительных нагрузок:

; (2.2.6.2.4)

. (2.2.6.2.5)

Кривизну железобетонного элемента на участках с трещинами определяем по формуле:

, (2.2.6.2.6)

где - момент, от действия которого определяется кривизна;

- приведенный модуль деформации сжатого бетона при заданном действии нагрузки (продолжительном/непродолжительном).

- момент инерции приведенного сечения относительно его центра тяжести.

, (2.2.6.2.7)

,

.

где - относительная деформация бетона при заданном действии нагрузки.

Значение принимается равным:

- при непродолжительном действии нагрузки .

-при продолжительном действии нагрузки при относительной влажности воздуха 40-75% .

, (2.2.6.2.8)

где и - моменты инерции площадей сечения соответственно сжатой зоны бетона и растянутой арматуры относительно центра тяжести приведенного без учета бетона растянутой зоны поперечного сечения;

- коэффициент приведения растянутой арматуры к бетону.

, (2.2.6.2.9)

где - модуль упругости растянутой арматуры, .

(п.2.2.6.1).

;

;

;

;

;

;

, (2.2.6.2.10)

где x - высота сжатой зоны бетона;

- площадь сечения свесов сжатой полки,

; (2.2.6.2.11)

.

Высота сжатой зоны бетона (Рисунок 2.2.6.2.1) тавровых и двутавровых сечений может быть определена по формуле:

, (2.2.6.2.12)

где - коэффициент армирования сечения;

; (2.2.6.2.13)

;

; (2.2.6.2.14)

;

- высота сжатой полки сечения.

;

;

;

;

;

;

,

,

,

;

.

;

.

Условия выполняются.

Рисунок 2.2.6.2.1 - К расчету момента инерции приведенного сечения