Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен химия.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
477.18 Кб
Скачать

№1) Химия - наука о веществах, их строении, свойствах и превращениях. В широком понимании, вещество - это любой вид материи, обладающий собственной массой, например элементарные частицы. В химии понятие вещества более узкое, а именно: вещество - это любая совокупность атомов и молекул.

Традиционная химия изучает реакции, которые происходят на макроскопическом уровне (в лаборатории или в окружающем мире), и интерпретирует их на атомномолекулярном уровне.

Современная химия способна изучать химические реакции с участием отдельных молекул, обладающих строго определенной энергией.

Химия как метод изучения химических свойств и строения веществ является чрезвычайно многогранной и плодотворной наукой. На сегодняшний день известно около 15 млн. органических и около полумиллиона неорганических веществ,

Основу химии составляют атомномолекулярная теория, теория строения атомов и молекул, закон сохранения массы и энергии и периодический закон.

Б) Следующей по степени общности предмета является химия — наука о строении вещества и его преобразовании. Она обслуживается физикой и математикой как вспомогательными инструментами. Химия имеет четко определенную и весьма обширную область применения.

№2) Атомы, первоначально считавшиеся неделимыми, представляют собой сложные системы. Они имеют массивное ядро, состоящее из протонов и нейтронов, вокруг которого в пустом пространстве движутся электроны. Атомы очень малы – их размеры порядка 10–10–10–9 м, а размеры ядра еще примерно в 100 000 раз меньше (10–15–10–14 м). Поэтому атомы можно «увидеть» только косвенным путем, на изображении с очень большим увеличением (например, с помощью автоэлектронного проектора). Но и в этом случае атомы не удается рассмотреть в деталях. Наши знания об их внутреннем устройстве основаны на огромном количестве экспериментальных данных, которые косвенно, но убедительно свидетельствуют в пользу сказанного выше.

МОДЕЛЬ РЕЗЕРФОРДА.

Модель Резерфорда. Суть планетарной модели строения атома (Э.Резерфорд, 1911 г.) можно свести к следующим утверждениям:

1. В центре атома находится положительно заряженное ядро, занимающее ничтожную часть пространства внутри атома.

2. Весь положительный заряд и почти вся масса атома сосредоточены в его ядре (масса электрона равна 1/1823 а.е.м.).

3. Вокруг ядра вращаются электроны. Их число равно положительному заряду ядра.

Эта модель оказалась очень наглядной и полезной для объяснения многих экспериментальных данных, но она сразу обнаружила и свои недостатки. В частности, электрон, двигаясь вокруг ядра с ускорением (на него действует центростремительная сила), должен был бы, согласно электромагнитной теории, непрерывно излучать энергию. Это привело бы к тому, что электрон должен был бы двигаться вокруг ядра по спирали и в конце концов упасть на него. Никаких доказательств того, что атомы непрерывно исчезают, не было, отсюда следовало, что модель Резерфорда в чем-то ошибочна.

МОДЕЛЬ БОРА.

Теория Бора. В 1913 г. датский физик Н.Бор предложил свою теорию строения атома. Как и Резерфорд, он считал, что электроны двигаются вокруг ядра подобно планетам, движущимся вокруг Солнца. Однако к этому времени Дж.Франк и Г.Герц (1912 г.) доказали дискретность энергии электрона в атоме и это позволило Бору положить в основу новой теории два необычных предположения (постулата):

1. Электрон может вращаться вокруг ядра не по произвольным, а только по строго определенным (стационарным) круговым орбитам.

Радиус орбиты r и скорость электрона v связаны квантовым соотношением Бора:

mrv = nћ                                                                 

где m — масса электрона, n — номер орбиты,  ћ — постоянная Планка (ћ = 1,05∙10-34 Дж∙с).

2. При движении по стационарным орбитам электрон не излучает и не поглощает энергии.

Таким образом, Бор предположил, что электрон в атоме не подчиняется законам классической физики. Согласно Бору, излучение или поглощение энергии определяется переходом из одного состояния, например с энергией Е1, в другое — с энергией Е2, что соответствует переходу электрона с одной стационарной орбиты на другую. При таком переходе излучается или поглощается энергия ∆E, величина которой определяется соотношением

∆E = E1 – E2 = hv,                                                                    

где v — частота излучения, h = 2 ћ = 6,62∙10-34 Дж

Современное строение

Согласно современным представлениям атомы имеют сложное строение. Они состоят из ядра и электронов. Ядро почти в 2000 раз тяжелее атома. Но при этом оно примерно в 50000 раз меньше атома. То есть ядро атома очень маленькое и очень тяжелое Если мысленно увеличить масштаб и представить, что ядро атома имеет диаметр 2 см, тогда радиус атома составил бы приблизительно 500 м. Как выяснили ученые, ядро тоже имеет сложное строение. Оно состоит, главным образом, из двух видов частиц протонов и нейтронов. Протоны имеют заряд +1 и массу, приблизительно равную 1 (в атомных единицах массы, а.е.м.). А.е.м. – величина очень удобная для измерения массы частиц микромира. Нейтрон (о чем можно догадаться по его названию) не имеет заряда, а его масса тоже примерно равна 1 а.е.м. Число протонов в ядре соответствует порядковому номеру химического элемента

неопределённости принцип — фундаментальное положение квантовой теории, утверждающее, что характеризующие физическую систему так называемой дополнительной физической величины (например, координата и импульс) не могут одновременно принимать точные значения

Принцип неопределённости Гейзенбе́рга (или Га́йзенберга) — в квантовой механике так называют принцип, дающий нижний (ненулевой) предел для произведения среднеквадратичных отклонений квантовых наблюдаемых.

КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ

- важнейшее универсальное свойство природы, заключающееся в том, что всем микрообъектам присущи одновременно и корпускулярные и волновые характеристики. Так, напр., электрон, нейтрон, фотон в одних условиях проявляются как частицы, движущиеся по классич. траекториям и обладающие определ. энергией и импульсом, а в других - обнаруживают свою волновую природу, характерную для явлений интерференции и дифракции частиц. В качестве первичного принципа К.- в. д. лежит в основе квантовой механики и квантовой теории поля.

Уравне́ние Шрёдингера — уравнение, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах

Уравнение Шрёдингера предназначено для частиц без спина, движущихся со скоростями много меньшими скорости света. В случае быстрых частиц и частиц со спином используются его обобщения (уравнение Клейна — Гордона, уравнение Паули, уравнение Дирака и др.)

понятие «орбиталь» определяется так: «Пространство вокруг ядра, в котором наиболее вероятно нахождение электрона, называется орбиталью». ...

Понятие орбиталь широко используется при рассмотрении электронной конфигурации атомов.

№3

Главное квантовое число n характеризует величину энергии электрона и может принимать только положительные целочисленные значения: 1, 2, 3 и т. д. С увеличением главного квантового числа энергия электрона возрастает. Состояние электрона, отвечающее определённому значению главного квантового числа, называют энергетическим уровнем электрона в атоме. Помимо энергии электрона главное квантовое число определяет размеры электронного облака: чем выше значение главного квантового числа, тем больше электронное облако. Электроны, характеризующиеся одним и тем же квантовым числом, имеют электронные облака приблизительно одинаковых размеров. Поэтому говорят о существовании в атоме электронных слоёв. Электронные слои обозначают большими буквами латинского алфавита K, L, M, N, O, причём K-слой является первым от ядра атома, ему соответствует главное квантовое число n = 1, L-слой — вторым, M-слой — третьим и т. д. Электроны, образующие данный слой, могут обладать несколько отличающейся друг от друга энергией и иметь орбитали различных форм. Из квантовомеханической теории следует, что с увеличением главного квантового числа n изменяются число и характер электронных орбиталей в пределах данного электронного слоя. Количество орбиталей для каждого значения n равно квадрату главного квантового числа (n2).

Второе квантовое число l, описывающее форму электронного облака, называется орбитальным квантовым числом. При данном главном вантовом числе n орбитальное квантовое число l может принимать любые целочисленные значения от 0 до n–1. Соответствующие орбитали обозначаются строчными буквами латинского алфавита: s (l = 0), p (l = 1), d (l = 2), f (l = 3). Орбитальное квантовое число отображает энергию электрона на подуровне. Электроны с различными орбитальными квантовыми числами несколько отличаются друг от друга: их энергия тем выше, чем больше число l. Число возможных подуровней в каждом энергетическом уровне совпадает с порядковым номером электронного слоя, но фактически ни один энергетический уровень не содержит больше четырёх подуровней. Это справедливо для стационарного состояния атомов всех элементов. Так, первому энергетическому уровню соответствует s-подуровень; второму уровню — два подуровня: s и p; третьему уровню — три подуровня: s, p и d; четвёртому и следующим уровням —четыре подуровня: s, p, d и f..

№4

Принцип минимума энергии

Принцип минимума энергии определяет порядок заселения атомных орбиталей, имеющих различные энергии. Согласно принципу минимума энергии, электроны занимают в первую очередь орбитали, имеющие наименьшую энергию. Энергия подуровней растет в ряду:

1s < 2s < 2 p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f 5d < 6p < 7s < 5f 6d...

Атом водорода имеет один электрон, который может находиться на любой орбитали. Однако, в основном состоянии он должен занимать 1s-орбиталь, имеющую самую низкую энергию.

В атоме калия последний девятнадцатый электрон может заселить либо 3d-, либо 4s-орбиталь. В соответствии с принципом минимума энергии, электрон занимает 4s-орбиталь, что подтверждается экспериментом.

Следует обратить внимание на неопределенность записи 4f 5d и 5f 6d. Оказалось, что у одних элементов более низкую энергию имеет 4f-подуровень, а у других - 5d-подуровень. То же самое наблюдается для 5f- и 6d-подуровней.

Принцип Паули

Принцип Паули, который часто называют еще принципом запрета, ограничивает число электронов, которые могут находиться на одной орбитали. Согласно принципу Паули, на любой орбитали может находиться не более двух электронов и то лишь в том случае, если они имеют противоположные спины (неодинаковые спиновые числа). Поэтому в атоме не должно быть двух электронов с одинаковыми четырьмя квантовыми числами (n, l, ml, ms).

Атом лития имеет три электрона. Орбиталь с самой низкой энергией - 1s-орбиталь - может быть заселена лишь двумя электронами, причем у этих электронов должны быть разные спины. Если обозначать спин +1/2 стрелкой, направленной вверх, а спин −1/2 - стрелкой, направленной вниз, то два электрона с противоположными (антипараллельными) спинами на одной орбитали можно схематически представить так:

Третий электрон в атоме лития должен занимать орбиталь, следующую по энергии за самой низкой орбиталью, то есть 2s-орбиталь.

Правило Гунда

Правило Гунда (Хунда) определяет порядок заселения электронами орбиталей, имеющих одинаковую энергию. Оно было выведено немецким физиком-теоретиком Ф. Гундом (Хундом) в 1927 г. на основе анализа атомных спектров.

Согласно правилу Гунда, заселение орбиталей, относящихся к одному и тому же энергетическому подуровню, начинается одиночными электронами с параллельными (одинаковыми по знаку) спинами, и лишь после того, как одиночные электроны займут все орбитали, может происходить окончательное заселение орбиталей парами электронов с противоположными спинами. В результате суммарный спин (и сумма спиновых квантовых чисел) всех электронов в атоме будет максимальным.

Например, атом азота имеет три электрона, находящиеся на 2р-подуровне. Согласно правилу Гунда, они должны располагаться поодиночке на каждой из трех 2р-орбиталей. При этом все три электрона должны иметь параллельные спины:

ПРИМЕРЫ II период

III период

IV период

№5 В больших периодах с ростом заряда ядер заполнение уровней электронами происходит сложнее, что объясняет и более сложное изменение свойств элементов по сравнению с элементами малых периодов. Так, в четных рядах больших периодов с ростом заряда число электронов на внешнем уровне остается постоянным и равно 2 или 1.Поэтому, пока идет заполнение электронами следующего за внешним (второго снаружи) уровня, свойства элементов в этих рядах изменяются крайне медленно. Лишь в нечетных рядах, когда с ростом заряда ядра увеличивается число электронов на внешнем уровне (от 1 до 8), свойства элементов начинают изменяться так же, как у типических.

 орбитали в атоме заполняются в порядке возрастания суммы n + l, а при одинаковых значениях этой суммы в порядке возрастания n. Для возможных значений n, l и их суммы можно составить таблицу:

n

l

Форма орбитали

Сумма n + l

Орбиталь

1

0

s

1

1s

2

0 1

s p

2 3

2s 2p

3

0 1 2

s p d

3 4 5

3s 3p 3d

4

0 1 2 3

s p d f

4 5 6 7

4s 4p 4d 4f

5

0 1 2 3 4

s p d f

5 6 7 8 9

5s 5p 5d 5f

6

0 1 2 3 4 5

s p d f

6 7 8 9 10 11

6s 6p 6d 6f

7

0 1 2 3 4 5 6

s p d f

7 8 9 10 11 12 13

7s 7p 7d 7f

С помощью этой таблицы можно, на основании правила Клечковского (предоставим читателю возможность проделать это самостоятельно), составить последовательность заполнения орбиталей электронами:

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p

Набор орбиталей с одинаковым главным квантовым числом называют электронным (или энергетическим) уровнем, например, орбитали с n = 3 – третьим электронным уровнем, набор одинаковых орбиталей электронного уровня (например, р-орбитали третьего уровня) – электронным подуровнем. Для n от 1 до 4 диаграмма распределения орбиталей по энергиям выглядит так (более высокая орбиталь соответсвует большей энергии):

Состояние атома с минимально возможной энергией называется основным или невозбужденным, все остальные состояния являются возбужденными. Состояние атома с определенным распределением электронов по орбиталям называется терм.

Принцип наименьшей энергии (правило Клечадвского),

Заполнение энергетических уровней в водородоподобных атомах (микросистема, состоящая из ядра и одного электрона) происходит в соответствие с монотонным ростом главного квантового числа я (»= 1,2, 3, ... и т.д.). При каждом значении п заполнение подуровней должно осуществляться в порядке возрастания орбитального квантового числа I, которое принимает значения от 0 до (к-1). И заполнение следующего энергетического уровня начинается только в том случае, когда предыдущий уровень заполнен полностью.

Примеры….

Применение правила Клечковского для калия (Z = 19) и скандия (Z = 21).

Предшествующий калию элемент аргон (Z = 18) имеет следую щее распределение электронов по орбиталям: 1s22s22p63s23p6.

При распределении электронов по орбиталям в атоме К в соот ветствии с правилом Клечковского предпочтение отдается орби тали 4s (сумма квантовых чисел n + l  равна 4 + 0 = 4) по сравнению с орбиталью 3d (сумма квантовых чисел п + l равна 3 + 2 = 5), как орбитали, имеющей минимальное значение n + l

Следовательно, для атома К: 1s22s22p63s23p64s1

2. Предшествующий скандию элемент кальций (Z = 20) имеет такое распределение электронов по орбиталям: 1s22s22p63s23p64s2

Из орбиталей 3d (n + l  равно 3 + 2 = 5) и 4р (n + l  равно 4 + 1 = 5) При распределении электронов в атоме Sc по орбиталям предпоч тение следует отдать орбитали 3d, как орбитали, имеющей минималь ное значение n = 3 при одинаковых суммах квантовых чисел n +  l , равных 5.

Поэтому скандий характеризуется таким распределением электро нов по орбиталям: 1s22s22p63s23p63d14s2

 

№6

Во всех моделях атома электроны называют s-, p-, d- и f-электронами в зависимости от подуровня, на котором они находятся. Элементы, у которых внешние (то есть наиболее удаленные от ядра) электроны занимают только s-подуровень, принято называть s-элементами. Точно так же существуют p-элементы, d-элементы и f-элементы.

s-элементы. Заполняется s-подуровень внешнего уровня (s1 — s2). Сюда относятся первые два элемента каждого периода.

р-элементы. Заполняется р-подуровень внешнего уровня (р1 — p6)- Сюда относятся последние шесть элементов каждого периода, начиная со второго.

d-элементы. Заполняется d-подуровень последнего уровня (d1 — d10), а на последнем (внешнем) уровне остается 1 или 2 электрона. К ним относятся элементы вставных декад (10) больших периодов, начиная с 4-го, расположенные между s- и p-элементами (их также называют переходными элементами).

f-элементы. Заполняется f-подуровень глубинного (треть его снаружи) уровня (f1 —f14), а строение внешнего электронного уровня остается неизменным. Это лантаноиды и актиноиды, находящиеся в шестом и седьмом периодах.

№7

Принцип Паули: в атоме не может быть электронов с одина ковым значением всех четырех квантовых чисел

 

Поскольку свойства электронов характеризуются квантовыми числами, принцип Паули часто формулируется так:

В атоме не может быть двух электронов, у которых все четыре квантовых числа были бы одинаковы. Хотя бы одно из квантовых чисел n, l, ml и ms, должно обязательно различаться проекцией спина. Поэтому в атоме могут быть лишь два электрона с одинаковыми n, l и ml: один с ms = +1/2 другой c ms = -1/2 . Напротив, если проекции спина двух электронов одинаковы, должно отличаться одно из квантовых чисел n, l или ml. Зная принцип Паули, посмотрим, сколько же электронов в атоме может находиться на определенной «орбите» с главным квантовым числом n. Первой «орбите» соответствует n = 1. Тогда l = 0, ml=0 и ms может иметь произвольные значения: +1/2 или -1/2 . Мы видим, что если n = 1, таких электронов может быть только два.

В общем случае, при любом заданном значении n электроны прежде всего отличаются побочным квантовым числом l, принимающим значения от 0 до n 1. При заданных n и l может быть (2l + 1) электронов с разными значениями магнитного квантового числа ml. Это число должно быть удвоено, так как заданным значениям n, l и ml соответствуют два разных значения проекции спина ms.

ЁМКОСТЬ

Каждый подуровень содержит 2l + 1 орбитали, на которых размещаются не более 2(2l + 1) электронов. Отсюда следует, что емкость s-орбиталей – 2, p-орбиталей – 6, d-орбиталей – 10 и f-орбиталей – 14 электронов.

Правило Гунда: электроны располагаются на одинаковых орбиталях таким образом, чтобы суммарный спин был макси мален.

ПРИМЕРЫ

№8

Периодическая система химических элементов - естественная классификация химических элементов, являющаяся табличным выражением периодического закона Д.И. Менделеева. Прообразом Периодической системы химических элементов послужила таблица, составленная Д.И. Менделеевым 1 марта 1869 г. В 1870 г. В 1870 г. Менделеев назвал систему естественной, а в 1871 г. - периодической.

Число элементов в современной Периодической системе почти вдвое больше, чем было известно 60-х годах XIX в. (на сегодняшний день - 113), однако ее структура со времен Менделеева почти не изменилась. Хотя за всю историю Периодической системы было опубликовано более 50 различных вариантов ее изображения, наиболее популярными являются предложенные Менделеевым короткопериодная и длиннопериодная формы.

Главный принцип построения Периодической системы - выделение в ней периодов (горизонтальных рядов) и групп (вертикальных столбцов) элементов. Современная Периодическая система состоит из 7 периодов (седьмой период должен закончиться 118-м элементом). Короткопериодный вариант Периодической системы содержит 8 групп элементов, каждая из которых условно подразделяется на группу А (главную) и группу Б (побочную). В длиннопериодном варианте Периодической системы - 18 групп, имеющих те же обозначения, что и в короткопериодном. Элементы одной группы имеют одинаковое строение внешних электронных оболочек атомов и проявляют определенное химическое сходство.

Номер группы в Периодической системе определяет число валентных электронов а атомах элементов. При этом в группах, обозначенных буквой А, содержатся элементы, в которых идет заселение s- и р-подуровней - s-элементы (IA- и IIA-группы) и р-элементы (IIIA-VIIIA-группы), а в группах, обозначенной буквой Б, находятся элементы, в которых заселяются d-подуровни - d-элементы. Поскольку в каждом большом периоде должно находиться по 10 d-элементов (у которых заполняются пять d-орбиталей), то Периодическая система должна содержать 10 соответствующих групп. Однако традиционно используется нумерация групп лишь до восьми, поэтому число групп d-элементов расширяется за счет введения дополнительных цифр - это IБ-VIIБ, VIIIБ0, VIIIБ1 и VIIIБ2-группы. Для f-элементов номеров групп не предусмотрено. Обычно их условно помещают в ячейки Периодической системы, отвечающие лантану (лантаноиды) и актинию (актиноиды). Символы лантаноидов и актиноидов выносятся за пределы Периодической системы в виде отдельных рядов.

Номер периода в Периодической системе соответствует числу энергетических уровней атома данного элемента, заполненных электронами.

Номер периода = Число энергетических уровней, заполненных электронами = Обозначение последнего энергетического уровня