
- •Оглавление
- •1. Схема Бернулли 20
- •2. Дискретные случайные величины 24
- •4. Докажите, что для биномиального закона распределения сл. Величина с вероятностью успеха р в каждом из n независимых испытаний выполняется равенство: 32
- •Что называется случайным событием, связанным с опытом? Как определяется событие, противоположное данному? Приведите примеры.
- •Что называется суммой и произведением событий а и в? Имеют ли смысл сумма и произведение событий, относящихся к разным опытам? Перечислите все случай наступления события
- •Какие события называются достоверными и невозможными и каковы их ве-роятности? Пусть a, b и c – случайные события. Перечислите все случаи наступления события .
- •В каком случае событие в называют следствием события а? Какие события называются равными? Объясните, почему .
- •Пусть а и в – случайные события. Упростите выражение . Найдите событие, противоположное событию .
- •Докажите, что . Что означает событие ?
- •Дайте определение условной вероятности и приведите его статистическую интерпретацию. Укажите примеры, когда: 1) ; 2)
- •Как соотносятся понятия независимые события а и в и несовместные события а и в? Следует ли из независимости событий а,в,с независимость событий ав и ? Почему?
- •В чем состоит геометрический подход к определению вероятности? Как находится вероятность попадания в заданное множество, если точка случайно выбирается на отрезке ab? в треугольнике abc?
- •24. В чем состоит геометрический подход к определению вероятности? Как находится вероятность попадания в заданное множество, если точка случайно выбирается в круге радиуса r? в кубе со стороной a?
- •25. Что такое полная группа событий? Приведите пример, когда события ав, и не образуют полной группы событий.
- •26. Верно ли, что события образуют полную группу для любых событий а и в? Ответ обоснуйте.
- •28. Сформулируйте и докажите формулу полной вероятности. Приведите пример ее применения.
- •1.Схема Бернулли
- •30. В чем состоит схема Бернулли? Запишите формулу для вероятности успехов в серии испытаний по схеме Бернулли и приведите пример ее применения.
- •40. Запишите приближенные формулы Пуассона. При каких условиях они дают хорошее приближение? Приведите пример их применения.
- •2.Дискретные случайные величины
- •42. Сформулируйте основные свойства функции распределения случайной величины и продемонстрируйте их на примере.
- •46. Что называется геометрическим распределением с параметром ? Приведите пример опытов, в котором определена случайная величина, распределенная по геометрическому закону с параметром .
- •48. Какой закон распределения называется законом Пуассона? в чем состоит связь этого закона с предельной теоремой Пуассона (приближенной формулой Пуассона)?
- •50. Пусть – независимые случайные величины, принимающие с вероятностью значения 0 и 1. Верно ли, что и – независимые случайные величины? Ответ обоснуйте.
- •52. Перечислите основные свойства математического ожидания дискретной случайной величины. Объясните, что понимается под суммой и произведением случайных величин?
- •53. Приведите (с обоснованием) пример дискретного распределения вероятностей, для которого не существует математическое ожидание.
- •54. Может ли математическое ожидание дискретной случайной величины, принимающей целые значения, быть числом нецелым? Ответ обоснуйте.
- •55. Пусть – дискретная случайная величина, принимающая только неотрицательные значения и имеющая математическое ожидание . Докажите, что .
- •58. Как определяется и что характеризует дисперсия дискретной случайной величины X ? Перечислите основные свойства дисперсии.
- •4.Докажите, что для биномиального закона распределения сл. Величина с вероятностью успеха р в каждом из n независимых испытаний выполняется равенство:
- •70. Чему равен и Cov при условии независимости случайных величин ? Что можно сказать о , если , где и – некоторые числа ? Ответ обоснуйте.
- •10.Перечислите основные свойства функции плотности вероятности. Чем объясняется название «плотность вероятности»?
- •11.Как определяется показательный закон распределения с параметром ? Укажите формулу для функции плотности , найдите соответствующую функцию распределения и постройте графики функций и .
- •12.Как определяется равномерный закон распределения на отрезке ? Укажите формулу для функции плотности , найдите соответствующую функцию распределения и постройте графики функций и .
- •76. Возможно ли равномерное распределение на всей числовой оси? Чему равна вероятность для равномерно распределенной на отрезке случайной величины ? Рассмотрите случаи: 1) и 2)
- •78. Запишите плотность распределения нормальной случайной величины , для которой . Как изменится график плотности распределения, если: а) увеличится б) увеличится ?
- •82. Объясните (с доказательством) вероятностный смысл параметра в формуле для функции плотности случайной величины , распределенной по нормальному закону.
- •90. Сформулируйте определение эксцесса случайной величины и укажите его основные свойства. Чему равен эксцесс для нормального распределения?
- •92. Что называется системой случайных величин? Сформулируйте определение функции распределения двумерного случайного вектора и дайте его геометрическую интерпретацию.
- •93. Сформулируйте основные свойства функции распределения случайного вектора и приведите пример двумерной функции распределения.
- •98. Как можно найти функцию распределения, fxy(X,y) случайного вектора (X,y) с независимыми компонентами X и y , если известны их функции распределения f(X)X и f(y)y? Ответ обоснуйте.
- •Числовые характеристики случайного вектора
- •99. Как найти математическое ожидание функции φ(X,y) , где X,y – компоненты случайного вектора (X ,y) ? Как определяются начальные νk ,l и центральные μk ,l моменты случайного вектора (X ,y)?
- •100. Каков смысл начальных ν 0,1 , ν 1,0 и центральных μ 1,0 μ 0,1 μ 1,1, , моментов двумерного случайного вектора (X,y) ? Ответ обоснуйте.
- •101. Дайте определение корреляционной и ковариационной матриц для системы случайных величин х1,х2…Хn и сформулируйте их основные свойства.
- •104. Как определяются условные законы распределения для дискретных случайных величин X и y?
- •107. Сформулируйте и докажите неравенство Чебышева.
- •109. Сформулируйте и докажите теорему Чебушева для бесконечной последовательности случайных величин с одинаковыми математическими ожиданиями и дисперсиями, ограниченными одним и тем же числом.
- •110. Сформулируйте и докажите теорему Бернулли (закон больших чисел)
- •111. Сформулируйте центральную предельную теорему. Укажите примеры ее применения.
- •112. Сформулируйте центральную предельную теорему для одинаково распределенных случайных величин и приведите пример ее применения.
- •113. Используя центральную предельную теорему, обоснуйте интегральную формулу Лапласа.
Какие события называются достоверными и невозможными и каковы их ве-роятности? Пусть a, b и c – случайные события. Перечислите все случаи наступления события .
Событие А, которое произойдет при любом испытании, называется достоверным
(А = ). Например, в опыте с подбрасыванием игральной кости событие А, задаваемое условием “число выпавших очков положительное”, будет достоверным. Вероятность достоверного события равна 1.
Событие А, которое не может произойти при испытании, называется невозможным (А=пуст.множ.). Например, событие А, задаваемое условием “при подбрасывании игральной кости выпало 7 очков”, является невозможным. Вероятность невозможного события равна 0.
Таблица,
характеризующая событие А
+С
А |
В |
С |
А +С |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
В каком случае событие в называют следствием события а? Какие события называются равными? Объясните, почему .
Событие А влечет за собой событие В или событие В является следствием события А (А В), если каждый исход, благоприятный для А, является благоприятным и для В. События А и В равны (А=В) в случае, когда они являются следствиями друг друга.
I) А АВ+А
Если А наступило(А=1),
то: 1) если В при этом наступило, то
наступило АВ
АВ+А
наступило; 2) если В не наступило, то
=1
А
=1
АВ+А
наступило.
II) АВ+А А
Если АВ+А наступило, то либо АВ наступило (т.е А наступило АВ+А А) либо наступило А (А наступило АВ+А А).
Событие А наступает,
т.к. любое событие А попадает в В или
.
А=А(
)=А*
=А.
Пусть а и в – случайные события. Упростите выражение . Найдите событие, противоположное событию .
(А+В)(А+ ) = АА+А +АВ+В =А+А(В+ )
Докажите, что . Что означает событие ?
=
*
*…..*
.
Наступление события А
+….А
означает, что наступает по меньшей мере
одно из событий А
,….,А
.
Наступление противоположного события
означает, что не наступает ни одно из
событий А
,….,А
или, по-другому, что наступают одновременно
все события
,….,
,
но это в точности означает наступление
события
*
*…..*
.
Ч.т.д.
А
А
+
А
А
+
А
А
:
означает наступление ровно
двух событий из трех.
Докажите, что
= + +…..+ . Что означает событие А А + А А + А А ?
= + +…..+ . Наступление события А *….*А означает, что наступают каждое из событий А ,….,А . Наступление противоположного события означает, что не наступает хотя бы одно из событий А ,….,А или, по-другому, что наступают события + +…..+ . Ч.т.д.
А А + А А + А А : означает наступление не меньше двух событий.
Сформулируйте статистическое определение вероятности. Почему вероятность удовлетворяет условию
? Возможны случаи Р=0 и Р=1? Ответ обоснуйте.
Вероятность случайного события есть положительное число, заключенное между нулем и единицей. Случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания. В этом случае 0<m<n, значит, 0<m/n<1, следовательно, 0<P(A)<1. Вероятность любого события удовлетворяет двойному неравенству 0≤Р(А)≤1.
В качестве статистической вероятности события понимают относительную частоту или число, близкое к ней. Свойства вероятностей вытекают из классического определения и сохраняются для статистического.
А – случ.событие
N
– кол-во опытов, N
-благ.
Р(А)=
,
где N
N,
N
0.
А- выпала игральная кость, числа которой > 7, P(A)=0
В- выпала игральная кость, числа которой < 7, P(A)=1
Какие соб.A1,A2,…An называются попарно несовместными? Сформулируйте правило сложения вер-тей для попарно несовместных соб. A1, A2, …An. Приведите пример попарно несовместных событий A,B, и C, таких что P(A+B+C)<1?
A1,A2,…An – попарно несовместны, если они никогда не выполняются одновременно. Исходя из следствия, можно сказать, что вер-ть появления одного из нескольких попарно несовместных соб., безразлично какого, равно сумме вер-тей этих соб. P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).Док-во: Рассмотрим 3 соб.A,B,C. Т.к. рассматриваемые события попарно несовместны, то появление одного из трех событий, A,B,C, равносильно наступлению одного из двух соб,A+B и C, поэтому в силу указанной теоремы
P(A+B+C)=P
=P(A+B)+P(C) =P(A)+P(B)+P(C).
Пример: Существуют
5 карточек с написанными цифрами:
1,2,3,4,5.
.
Соб.А – вытащили карточку с числами,
делящимися на 2, В – делящ. на 3, С – делящ.
на 5. События А,В,С попарно независимы.
АВ=
,
АС=
,
ВС=
.
P(A+B+C)=P(A)+P(B)+P(C).
,
,
P(A+B+C)=0,4+0,2+0,2=0,8<1
Объясните, почему Р(А+В)≤Р(А)+Р(В) для событий A и B. Чему равна сумма P(A)+P(
) вероятностей противоположных событий? Ответ обоснуйте.
А и В – как сов., так и несов. события.
Р(А+В)=Р(А)+Р(В) - Р(АВ)
Когда мы считаем P(А+В), то при сложении Р(А) и Р(В) мы дважды учитываем пересечение, то есть его надо вычесть:
Р(А)+Р(В)=Р(АВ)+Р(АВ)+Р(А+В)- Р(АВ)Р(А)+Р(В)=Р(АВ)+Р(А+В)
Р(А+В)=Р(А)+Р(В)-Р(АВ)
Р(А+В)≤Р(А)+Р(В)
Исходя из следствий (теорема сложения
вероятностей) можно сказать, что сумма
вероятностей противоположных событий
равна единице. P(A)+P(
)=1.
Т.к. события A
и
несовместны,
поэтому можно применить формулу
P(A+B)=P(A)+P(B).
При этом следует использовать то, что
событие A+
- достоверное, поэтому его вер-ть =1.Также
используют такую формулу, выражающую
вер-ть события A
через вер-ть противоположного события
.
P(A)=1-P(
)
Верно ли, что если событие A является следствием события B,то P(A) ≤ P(B)? Ответ обоснуйте.
Да, верно, т.к. согласно следствию: если соб B явл. следствием соб. A, то P(A) ≤ P(B). Т.к. A B, то B=A+(B/A)- сумма несовместных событий. Применяя правило сложения вер-тей, имеем P(B)=P(A)+P(B/A), откуда следует неравенство P(A) ≤ P(B)