
- •Оглавление
- •1. Схема Бернулли 20
- •2. Дискретные случайные величины 24
- •4. Докажите, что для биномиального закона распределения сл. Величина с вероятностью успеха р в каждом из n независимых испытаний выполняется равенство: 32
- •Что называется случайным событием, связанным с опытом? Как определяется событие, противоположное данному? Приведите примеры.
- •Что называется суммой и произведением событий а и в? Имеют ли смысл сумма и произведение событий, относящихся к разным опытам? Перечислите все случай наступления события
- •Какие события называются достоверными и невозможными и каковы их ве-роятности? Пусть a, b и c – случайные события. Перечислите все случаи наступления события .
- •В каком случае событие в называют следствием события а? Какие события называются равными? Объясните, почему .
- •Пусть а и в – случайные события. Упростите выражение . Найдите событие, противоположное событию .
- •Докажите, что . Что означает событие ?
- •Дайте определение условной вероятности и приведите его статистическую интерпретацию. Укажите примеры, когда: 1) ; 2)
- •Как соотносятся понятия независимые события а и в и несовместные события а и в? Следует ли из независимости событий а,в,с независимость событий ав и ? Почему?
- •В чем состоит геометрический подход к определению вероятности? Как находится вероятность попадания в заданное множество, если точка случайно выбирается на отрезке ab? в треугольнике abc?
- •24. В чем состоит геометрический подход к определению вероятности? Как находится вероятность попадания в заданное множество, если точка случайно выбирается в круге радиуса r? в кубе со стороной a?
- •25. Что такое полная группа событий? Приведите пример, когда события ав, и не образуют полной группы событий.
- •26. Верно ли, что события образуют полную группу для любых событий а и в? Ответ обоснуйте.
- •28. Сформулируйте и докажите формулу полной вероятности. Приведите пример ее применения.
- •1.Схема Бернулли
- •30. В чем состоит схема Бернулли? Запишите формулу для вероятности успехов в серии испытаний по схеме Бернулли и приведите пример ее применения.
- •40. Запишите приближенные формулы Пуассона. При каких условиях они дают хорошее приближение? Приведите пример их применения.
- •2.Дискретные случайные величины
- •42. Сформулируйте основные свойства функции распределения случайной величины и продемонстрируйте их на примере.
- •46. Что называется геометрическим распределением с параметром ? Приведите пример опытов, в котором определена случайная величина, распределенная по геометрическому закону с параметром .
- •48. Какой закон распределения называется законом Пуассона? в чем состоит связь этого закона с предельной теоремой Пуассона (приближенной формулой Пуассона)?
- •50. Пусть – независимые случайные величины, принимающие с вероятностью значения 0 и 1. Верно ли, что и – независимые случайные величины? Ответ обоснуйте.
- •52. Перечислите основные свойства математического ожидания дискретной случайной величины. Объясните, что понимается под суммой и произведением случайных величин?
- •53. Приведите (с обоснованием) пример дискретного распределения вероятностей, для которого не существует математическое ожидание.
- •54. Может ли математическое ожидание дискретной случайной величины, принимающей целые значения, быть числом нецелым? Ответ обоснуйте.
- •55. Пусть – дискретная случайная величина, принимающая только неотрицательные значения и имеющая математическое ожидание . Докажите, что .
- •58. Как определяется и что характеризует дисперсия дискретной случайной величины X ? Перечислите основные свойства дисперсии.
- •4.Докажите, что для биномиального закона распределения сл. Величина с вероятностью успеха р в каждом из n независимых испытаний выполняется равенство:
- •70. Чему равен и Cov при условии независимости случайных величин ? Что можно сказать о , если , где и – некоторые числа ? Ответ обоснуйте.
- •10.Перечислите основные свойства функции плотности вероятности. Чем объясняется название «плотность вероятности»?
- •11.Как определяется показательный закон распределения с параметром ? Укажите формулу для функции плотности , найдите соответствующую функцию распределения и постройте графики функций и .
- •12.Как определяется равномерный закон распределения на отрезке ? Укажите формулу для функции плотности , найдите соответствующую функцию распределения и постройте графики функций и .
- •76. Возможно ли равномерное распределение на всей числовой оси? Чему равна вероятность для равномерно распределенной на отрезке случайной величины ? Рассмотрите случаи: 1) и 2)
- •78. Запишите плотность распределения нормальной случайной величины , для которой . Как изменится график плотности распределения, если: а) увеличится б) увеличится ?
- •82. Объясните (с доказательством) вероятностный смысл параметра в формуле для функции плотности случайной величины , распределенной по нормальному закону.
- •90. Сформулируйте определение эксцесса случайной величины и укажите его основные свойства. Чему равен эксцесс для нормального распределения?
- •92. Что называется системой случайных величин? Сформулируйте определение функции распределения двумерного случайного вектора и дайте его геометрическую интерпретацию.
- •93. Сформулируйте основные свойства функции распределения случайного вектора и приведите пример двумерной функции распределения.
- •98. Как можно найти функцию распределения, fxy(X,y) случайного вектора (X,y) с независимыми компонентами X и y , если известны их функции распределения f(X)X и f(y)y? Ответ обоснуйте.
- •Числовые характеристики случайного вектора
- •99. Как найти математическое ожидание функции φ(X,y) , где X,y – компоненты случайного вектора (X ,y) ? Как определяются начальные νk ,l и центральные μk ,l моменты случайного вектора (X ,y)?
- •100. Каков смысл начальных ν 0,1 , ν 1,0 и центральных μ 1,0 μ 0,1 μ 1,1, , моментов двумерного случайного вектора (X,y) ? Ответ обоснуйте.
- •101. Дайте определение корреляционной и ковариационной матриц для системы случайных величин х1,х2…Хn и сформулируйте их основные свойства.
- •104. Как определяются условные законы распределения для дискретных случайных величин X и y?
- •107. Сформулируйте и докажите неравенство Чебышева.
- •109. Сформулируйте и докажите теорему Чебушева для бесконечной последовательности случайных величин с одинаковыми математическими ожиданиями и дисперсиями, ограниченными одним и тем же числом.
- •110. Сформулируйте и докажите теорему Бернулли (закон больших чисел)
- •111. Сформулируйте центральную предельную теорему. Укажите примеры ее применения.
- •112. Сформулируйте центральную предельную теорему для одинаково распределенных случайных величин и приведите пример ее применения.
- •113. Используя центральную предельную теорему, обоснуйте интегральную формулу Лапласа.
4.Докажите, что для биномиального закона распределения сл. Величина с вероятностью успеха р в каждом из n независимых испытаний выполняется равенство:
=
5.Пусть Х –
дискретная случайная величина,
распределенная по геометрическому
закону с параметром р. Докажите, что D
(X) =
.
67. Как определяется ковариация Cov(X,Y) случайных величин X,Y?Докажите, что D(X+Y)=D(X)+D(Y)+2Cov(X,Y).
1.Ковариацией COV(X,Y) случайных величин X,Y называется математическое ожидание произведения отклонений X и Y.
Сov(X,Y)=E[(X-E(X)][Y-E(Y)]
2.
Пусть Х и У – две случайные величины.
Положим, Z=X+Y По теореме сложения
математических ожиданий будем иметь:
М(Z)=E(X)+E(Y). Вычитая это равенство из
предыдущего, получим:
,
где
обозначает,
как и раньше, отклонение величины Х.
Отсюда
=
Найдем дисперсию Х+У. Имеем
D(X+Y)=D(X)+D(Y)+2E(
),
где М(
)
= Cov(X,Y).
Формула принимает вид: D(X+Y)=D(X)+D(Y)=2Cov(X,Y)
6.Сформулируйте основные свойства ковариации Cov(X,Y) случайных величин Х и У. Докажите, что Cov(X,Y)=E(XY)-E(X)E(Y)
Ковариацией (корреляционным моментом) Cov(X, Y) случайных величин X, Y называется мате-матическое ожидание произведения отклонений X и Y
Cov(X, Y) = E[(X − E(X))(Y − E(Y))].
Ковариация обладает следующими свойствами:
1. Cov(X, Y) = E(XY) − E(X)E(Y).
2. Cov(X, X) = D(X).
3. D(X+Y) = D(X) + D(Y) + 2Cov(X, Y).
4. Если X и Y независимы, то Cov(X, Y) = 0.
5. Cov(X, Y) = Cov(Y, X).
6. Cov(aX , Y) = Cov(X, aY) = aCov(X, Y).
7. Cov(X +Y, Z) = Cov(X, Z) + Cov(Y, Z).
8. Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z).
Если Cov(X, Y) = 0, то случайные величины X и Y называются некоррелированными.
Нет доказательства!!!!!!!!!!!!!!
7.Как определяется коэффициент корреляции ρ (X;Y) случайных величин X иY ? Каковы основные свойства коэффициента корреляции? Что можно сказать о X и Y , если ׀ρ(X;Y) ׀ =1?
Коэффициент корреляции случайных величин X и Y определяется формулой ρ (X;Y)= Cov(X;Y)/ (σ(X)*σ(Y)), где Cov(X;Y) – ковариация X и Y, а σ(X) – среднее квадратичное отклонение Х, σ(Y) – среднее квадратичное отклонение Y.
Основные св-ва:
ρ(X;Y)=ρ(Y;X)
׀ρ(X;Y) ׀ <=1
׀ρ(X;Y) ׀ =1 равнозначно существованию констант a,b таких, что равенство Y=a+bX выполняется с вероятностью 1.
70. Чему равен и Cov при условии независимости случайных величин ? Что можно сказать о , если , где и – некоторые числа ? Ответ обоснуйте.
Если X и Y независимые случайные величины, то Cov(X, Y) = E(X,Y) – E(X)E(Y) = E(X)E(Y) - E(X)E(Y) = 0
Если
(β≠0),
то
Док-во: Cov(X,Y) = Cov(X, α + βX) = E (X(α+βX)) – E(X)E(α+βX) = E(Xα+βX2) - E(X)(E(α) + E(βX)) = E(Xα) + E(βX2) – αE(X) – β(E(X))2 = β(E(X2) – (E(X))2) = βD(X)
тоесть ч.т.д.
8.Дайте определение
непрерывной случайной величины
.
Чему в этом случае равна вероятность
,
где
– определенное число? Следует ли из
равенства
для непрерывной случайной величины
,
что событие
никогда не наступает?
Случайная величина X называется непрерывной, если её функция распределения F(X) непрерывна в любой точке X. P(X=a), где а – определённое число, есть вероятность каждого и отдельного значения. P(X=a)=0, т.е. вер-ть каждого отдельного значения равна нулю. Однако это не означает, что событие Х=а невозможно. В результате испытания случ. величина обязательно примет одно из возможных значений; в частности, это значение может оказаться равным а.
9.Какое распределение
называется абсолютно непрерывным? Что
такое плотность распределения и какова
ее связь с функцией распределения? Может
ли абсолютно непрерывная случайная
величина иметь разрывную функцию
плотности
?
Ответ обоснуйте.
Случайная величина X называется абсолютно непрерывной, если найдется неотрицательная функция f(x), называемая плотностью распределения, такая, что для a < b вероятность попадания X в промежуток [a, b] получается путем интегрирования данной функции
Для функции распределения F(x) имеем
Плотность распределения обладает следующими свойствами:
1.
,
(неотрицательность).
2.
(условие нормировки).
3.
в точке непрерывности f(x).
Математическое
ожидание непрерывной функции
находится
пу-тем интегрирования произведения
данной функции и плотности распределения:
Произвольная случайная величина X называется сосредоточенной на промежутке [a, b], если вероятность попадания X в данный промежуток равна 1.
Плотность распределения абсолютно непрерывной случайной величины, сосредоточенной на промежутке [a, b], равна 0 вне [a, b].
Функцию распределения F(x) абсолютно непрерывной случайной величины, сосредоточенной на промежутке [a, b], можно представить в виде