
- •1. Предмет микроэлектроники, основные понятия и определения. Классификация имс.
- •2.Общая классификация основных типов логических элементов. Сравнительная характеристика. Реализация базовых логических функций с помощью диодных ключей
- •3.Особенности структуры n-p-n бп транзисторов имс с изоляцией на основе n-p перехода. Влияние общей подложки на работу биполярных транзисторов имс.
- •4 . Диэлектрическая изоляция элементов биполярных имс. Имс с комбинированной изоляцией.
- •5. Интегральные транзисторы типа p-n-p. Основные параметры и особенности структуры.
- •6 . Многоэмиттерные транзисторы имс. Принцип действия.
- •7.Имс повышенной степени интеграции. Многоколлекторные транзисторы.
- •8 .Использование выпрямляющего контакта металл-полупроводник для увеличения быстродействия биполярных транзисторов. Транзисторы с диодом Шоттки.
- •9.Диодные структуры в микроэлектронике. Сравнительная характеристика. Влияние подложки имс на параметры и характеристики интегральных диодов и стабилитронов.
- •10.Конструктивные особенности активных элементов полупроводников микросхем на основе полевых транзисторов. Кмоп структуры.
- •11.Использование двух-затворных мдп структур для создания постоянных запоминающих устройств с электрическим стиранием информации.
- •12.Использование мдп структур для создания постоянных запоминающих устройств с уф стиранием информации.
- •13. Сущность эффектов короткого канала в мдп структурах. Механизм влияния короткоканальных эффектов на пороговое напряжение транзисторов.
- •14. Вах характеристики мдп транзисторов с коротким и длинным каналом. Сравнительный анализ.
- •15. Основные проблемы миниатюризации мдп транзисторов. Выбор материала подзатворного диэлектрика.
- •16. Конструктивные особенности субмикронных транзисторов ldd структуры и их влияние на эффекты короткого канала.
- •17. Современные мдп транзисторы на основе технологии «напряженного» кремния. Принцип действия. Критерии выбора материала для формирования области канала таких транзисторов.
- •18. Структура современных мдп транзисторов, выполненных на основе технологии «кремний на изоляторе». Перспективы дальнейшего уменьшения размеров мдп транзисторов.
- •19. Резистивные элементы полупроводниковых имс. Пленочные и диффузионные резисторы.
- •20. Конденсаторы и индуктивные элементы в микроэлектронике.
- •22. Физические ограничения в микроэлектронике. Электромиграция в имс. Влияние межэлементных соединений на работу имс. Понятие задержки импульса.
- •23. Сравнительная характеристика подложек на основе кремния и арсенида галлия. Структура и принцип действия полевых транзисторов с управляющим переходом металл-полупроводник.
- •24. Гетероструктуры на основе арсенида галлия. Явления сверхинжекции в гетеропереходах. Гетеропереходные биполярные транзисторы.
- •25. Понятие двумерного электронного газа. Использование гетероперехода при создании полевых приборов. Hemt транзистор на основе арсенида галлия.
- •26. Отличительные особенности структур псевдоморфных и метаморфных hemt транзисторов. Перспективы использования нитрида галлия для формирования гетероструктур.
- •27. Применение пьезоэффекта в радиоэлектронике. Принцип действия основных приборов пьезоэлектроники.
- •28.Акустоэлектрический эффект. Приборы на основе поверхностно-акустических волн. Акустоэлектрические усилители.
- •29.Элементы функциональной электроники на основе сверхпроводящих материалов. Стационарный и нестационарный эффекты Джозефсона.
- •30.Принцип действия и сферы использования микроэлектронных механических систем. Молекулярная и биоэлектроника.
12.Использование мдп структур для создания постоянных запоминающих устройств с уф стиранием информации.
МДП-транзистор с плавающим затвором.
В транзисторах с плавающим затвором инжектированный заряд хранится на плавающем затворе, находящемся между первым и вторым подзатворными диэлектрическими слоями.
Механизм зарядки плавающего затвора основан на следующих эффектах. На стоковую область p-канального МДП-транзистора подается отрицательный потенциал. По мере увеличения отрицательного смещения обедненный слой и электрическое поле в нем будут расти. Под действием электрического поля обедненного слоя неосновные носители – электроны – из стоковой p+области будут выноситься в n область подложки.
Стирание хранимой в ППЗУ информации осуществляется при облучении информационного поля ультрафиолетовыми лучами.
13. Сущность эффектов короткого канала в мдп структурах. Механизм влияния короткоканальных эффектов на пороговое напряжение транзисторов.
Р
ассмотренные
в главе 13 соотношения и характеристики
присущи транзисторам с длинным каналом,
для которых выполняется условие: dИ+
dС
<<
, где dИ
и dС
– толщины обедненных слоев п-p переходов
исток – подложка и сток–подложка у
поверхности,
– длина канала
По мере уменьшения длины канала указанное условие перестает выполняться. Если величины и dИ + dС соизмеримы, то канал называют коротким. Для количественной характеристики вводится параметр К, определяемый выражением:
Для короткого канала величина К близка к единице.
14. Вах характеристики мдп транзисторов с коротким и длинным каналом. Сравнительный анализ.
П
ервое
отличие ВАХ транзистора с коротким
каналом заключается в меньшем напряжении
насыщения. При длинном канале насыщение
происходит вследствие перекрытия
канала у стока,
При коротком канале помимо этого насыщению способствует эффект сильного поля. Он заключается в том, что с ростом напряжения UСИ и продольной составляющей вектора напряженности электрического поля Ey подвижность электронов уменьшается, а их дрейфовая скорость увеличивается непропорционально Еу, стремясь к постоянной величине – скорости насыщения. Это замедляет рост тока при увеличении напряжения.
Второе отличие состоит в том, что ток стока и крутизна оказываются большими из-за уменьшения длины канала. Третье отличие – с ростом напряжения на затворе Uзи характеристики из квадратичных стремятся стать линейными из-за влияния эффекта сильного поля.
Следует отметить еще одну важную особенность МДП-транзисторов с коротким каналом. В сильном электрическом поле, существующем в канале у стока, электроны на длине свободного пробега могут приобретать энергию, значительно превышающую среднюю энергию теплового движения. Такие электроны называют горячими. Некоторые из них имеют энергию, достаточную для преодоления потенциального барьера.
15. Основные проблемы миниатюризации мдп транзисторов. Выбор материала подзатворного диэлектрика.
Долгое время снижение размеров транзистора осуществлялось путём простого масштабирования, то есть пропорциональным уменьшением длины затвора, толщины диэлектрика и глубины залегания n-p переходов.
Основными проблемами при микроминиатюризации МДП-транзисторов являются:
- туннелирование через затвор;
- инжекция горячих носителей в подзатворный диэлектрик;
- смыкание ОПЗ n-p переходов истокоа и стока;
- токи утечки в подпороговой области;
- уменьшение подвижности носителей в канале;
- увеличение последовательного сопротивления между истоком и стоком;
- обеспечение запаса между пороговым напряжением и напряжением питания.
Для предотвращения возникновения токов утечки в цепи затвора толщину диэлектрика нужно повысить хотя бы до 2–3 нм. Чтобы при этом сохранить прежнюю крутизну транзистора, необходимо пропорционально увеличить диэлектрическую проницаемость материала диэлектрика. В качестве замены традиционного для кремниевой технологии SiO2 с диэлектрической проницаемостью ε = 3.9 были предложены диэлектрики с высокой диэлектрической проницаемостью ZrO2, HfO2 (ε ≈ 25), Y2O3 (ε ≈ 15), Al2O3 (ε ≈ 10). В результате можно сформировать более толстый подзатворный диэлектрик без уменьшения усилительных свойств транзистора. При этом также уменьшается вероятность туннелирования электронов через подзатворный диэлектрик, а следовательно, существенно снижается ток утечки затвора.