
- •1. Предмет микроэлектроники, основные понятия и определения. Классификация имс.
- •2.Общая классификация основных типов логических элементов. Сравнительная характеристика. Реализация базовых логических функций с помощью диодных ключей
- •3.Особенности структуры n-p-n бп транзисторов имс с изоляцией на основе n-p перехода. Влияние общей подложки на работу биполярных транзисторов имс.
- •4 . Диэлектрическая изоляция элементов биполярных имс. Имс с комбинированной изоляцией.
- •5. Интегральные транзисторы типа p-n-p. Основные параметры и особенности структуры.
- •6 . Многоэмиттерные транзисторы имс. Принцип действия.
- •7.Имс повышенной степени интеграции. Многоколлекторные транзисторы.
- •8 .Использование выпрямляющего контакта металл-полупроводник для увеличения быстродействия биполярных транзисторов. Транзисторы с диодом Шоттки.
- •9.Диодные структуры в микроэлектронике. Сравнительная характеристика. Влияние подложки имс на параметры и характеристики интегральных диодов и стабилитронов.
- •10.Конструктивные особенности активных элементов полупроводников микросхем на основе полевых транзисторов. Кмоп структуры.
- •11.Использование двух-затворных мдп структур для создания постоянных запоминающих устройств с электрическим стиранием информации.
- •12.Использование мдп структур для создания постоянных запоминающих устройств с уф стиранием информации.
- •13. Сущность эффектов короткого канала в мдп структурах. Механизм влияния короткоканальных эффектов на пороговое напряжение транзисторов.
- •14. Вах характеристики мдп транзисторов с коротким и длинным каналом. Сравнительный анализ.
- •15. Основные проблемы миниатюризации мдп транзисторов. Выбор материала подзатворного диэлектрика.
- •16. Конструктивные особенности субмикронных транзисторов ldd структуры и их влияние на эффекты короткого канала.
- •17. Современные мдп транзисторы на основе технологии «напряженного» кремния. Принцип действия. Критерии выбора материала для формирования области канала таких транзисторов.
- •18. Структура современных мдп транзисторов, выполненных на основе технологии «кремний на изоляторе». Перспективы дальнейшего уменьшения размеров мдп транзисторов.
- •19. Резистивные элементы полупроводниковых имс. Пленочные и диффузионные резисторы.
- •20. Конденсаторы и индуктивные элементы в микроэлектронике.
- •22. Физические ограничения в микроэлектронике. Электромиграция в имс. Влияние межэлементных соединений на работу имс. Понятие задержки импульса.
- •23. Сравнительная характеристика подложек на основе кремния и арсенида галлия. Структура и принцип действия полевых транзисторов с управляющим переходом металл-полупроводник.
- •24. Гетероструктуры на основе арсенида галлия. Явления сверхинжекции в гетеропереходах. Гетеропереходные биполярные транзисторы.
- •25. Понятие двумерного электронного газа. Использование гетероперехода при создании полевых приборов. Hemt транзистор на основе арсенида галлия.
- •26. Отличительные особенности структур псевдоморфных и метаморфных hemt транзисторов. Перспективы использования нитрида галлия для формирования гетероструктур.
- •27. Применение пьезоэффекта в радиоэлектронике. Принцип действия основных приборов пьезоэлектроники.
- •28.Акустоэлектрический эффект. Приборы на основе поверхностно-акустических волн. Акустоэлектрические усилители.
- •29.Элементы функциональной электроники на основе сверхпроводящих материалов. Стационарный и нестационарный эффекты Джозефсона.
- •30.Принцип действия и сферы использования микроэлектронных механических систем. Молекулярная и биоэлектроника.
9.Диодные структуры в микроэлектронике. Сравнительная характеристика. Влияние подложки имс на параметры и характеристики интегральных диодов и стабилитронов.
Любой из n-p переходов интегральной транзисторной структуры может быть использован для формирования диодов. Обычно используются переходы база–эмиттер и база–коллектор. Существует 5 способов использования n-p переходов в качестве диодов: БК-Э, БЭ-К, Б–ЭК, Б–Э, Б–К. Анализируя параметры данных вариантов интегральных диодов, можно сделать следующие выводы:
· напряжение пробоя Uпр больше у тех вариантов, в которых используется коллекторный переход;
· обратные токи Iобр меньше у тех вариантов, в которых используется только эмиттерный переход;
· ёмкость диода между катодом и анодом Cд у вариантов с наибольшей площадью перехода (т.е. для включения Б–ЭК) максимальна. Паразитная емкость на подложку Cо минимальна у варианта Б–Э;
· время восстановления обратного тока tв, характеризующего время переключения диода, минимально для варианта БК–Э, так как у этого варианта накапливается заряд только в базе.
Интегральные стабилитроны могут быть сформированы на базе структуры интегрального транзистора в различных вариантах в зависимости от необходимого напряжения стабилизации и его температурного коэффициента:
· обратное включение диода БЭ–К используется для получения напряжения 5…10 В с температурным коэффициентом + (2…5) мВ/°С. В этом случае диод работает в режиме лавинного пробоя;
· обратное включение диода Б–Э применяют для получения напряжения стабилизации 3…5 В с температурным коэффициентом – (2…3) мВ/°С;
· для фиксации напряжения можно использовать один или несколько
последовательно включенных в прямом направлении диодов БК–Э. При этом напряжение стабилизации кратно напряжению на открытом переходе (0,7 В). Температурная чувствительность такого включения составляет –2мВ/°С.
10.Конструктивные особенности активных элементов полупроводников микросхем на основе полевых транзисторов. Кмоп структуры.
Комплементарная структура представляет собой пару последовательно включенных МДП-транзисторов с индуцированными каналами разного типа проводимости. Из всех возможных схем инверторов схема на транзисторах с разными типами проводимости обладает рядом достоинств. Главным преимуществом таких микросхем является минимальное энергопотребление, поскольку в статическом режиме ток через КМДП-структуру не протекает. Еще одно преимущество КМОМ-микросхем – широкий диапазон напряжений питания (от 3 до 15 В), что означает принципиально более высокую независимость от флуктуаций напряжения источника питания, шумов, колебаний температуры.
11.Использование двух-затворных мдп структур для создания постоянных запоминающих устройств с электрическим стиранием информации.
Запоминающими элементами СБИС ЭСППЗУ большой информационной емкости и высокого быстродействия являются n-канальные МДП-транзисторы с плавающим и управляющим затворами, изготавливаемые на основе совмещенной технологии с применением пленок поликремния для обоих затворов.
Основной отличительной особенностью транзисторов данного типа является возможность процесса стирания информации(удаление накопленного заряда с плавающего затвора) с помощью электрического импульса. Приборы постоянной памяти с электрическим стиранием информации позволяют осуществить перезапись не всей, а только части информации, при этом не требуется ее демонтаж из электронной системы.
Управление осуществляется элементом осуществляется за счет емкостной связи управляющий затвор-плавающий затвор и плавающий затвор-подложка. Зарядка плавающего затвора может осуществляться двумя способами:
- инжекцией горячих электронов через слой подзатворного диэлектрика
- туннелированием носителей через более тонкий слой подзатворного диэлектрика